Читать книгу Water, Climate Change, and Sustainability - Группа авторов - Страница 56

REFERENCES

Оглавление

1 Bauder, J. (2019). The Right Strategy for Irrigating Your Canola Crop. Available at: http://waterquality.montana.edu/farm‐ranch/irrigation/other_crops/canola.html (accessed on August 28, 2019)

2 Bennett, A.S. and Anex, R. P. (2008). Farm‐Gate Production Costs of Sweet Sorghum as a Bioethanol Feedstock. Transactions Of The ASABE, 51(2), 603–613.

3 Berger, M., van der Ent, R., Eisner, S., Bach, V., and Finkbeiner, M. (2014). Water Accounting and Vulnerability Evaluation (WAVE): Considering Atmospheric Evaporation Recycling and the Risk of Freshwater Depletion in Water Footprinting. Environmental Science & Technology, 48(8), 4521–4528.

4 Berndes, G. (2002). Bioenergy and water — the implications of large‐scale bioenergy production for water use and supply. Global Environmental Change, 12, 253–271.

5 Biotechnology Innovation Organization. (2017). The Biobased Economy : Measuring Growth and Impacts.

6 Bosch, R., van de Pol, M., and Philp, J. (2015). Policy: Define biomass sustainability. Nature, 523(7562), 526–527.

7 Broeren, M.L.M., Zijp, M.C., Waaijers‐van der Loop, S.L. et al. (2017). Environmental assessment of bio‐based chemicals in early‐stage development: a review of methods and indicators. Biofuels, Bioproducts and Biorefining, 11(4), 701–718.

8 Burnham, A., Wang, M.Q., and Wu, Y. (2006). Development and applications of GREET 2.7 ‐ The Transportation Vehicle‐CycleModel. Argonne, IL.

9 Camargo, G.G.T., Ryan, M.R., and Richard, T.L. (2013). Energy Use and Greenhouse Gas Emissions from Crop Production Using the Farm Energy Analysis Tool. BioScience, 63(4), 263–273.

10 Canakci, M., Topakci, M., Akinci, I., and Ozmerzi, A. (2004). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey.

11 Cardone, M., Mazzoncini, M., Menini, S. et al. (2003). Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass and Bioenergy, 25(6), 623–636.

12 Condon, A.G., Richards, R.A., Rebetzke, G.J., and Farquhar, G.D. (2004). Breeding for high water‐use efficiency. Journal of Experimental Botany, 55(407), 2447–2460.

13 Critchley, W., Siegert, K. and Chapman, C. (1991). Water Harvesting, A Manual Guide for the Design and Construction of Water Harvesting Schemes for Plant Production. FAO, Rome. Available at:http://www.fao.org/docrep/U3160E/U3160E00.htm (accessed on August 28, 2019)

14 Cséfalvay, E., Akien, G.R., Qi, L., and Horváth, I.T. (2015). Definition and application of ethanol equivalent: Sustainability performance metrics for biomass conversion to carbon‐based fuels and chemicals. Catalysis Today, 239, 50–55.

15 El‐Gafy, I., Grigg, N., and Waskom, R. (2017). Water‐Food‐Energy: Nexus and Non‐Nexus Approaches for Optimal Cropping Pattern. Water Resources Management, 31(15), 4971–4980.

16 Evans, R.G. (2019). Irrigation Technologies Comparison. Available at: https://www.ars.usda.gov/ARSUserFiles/21563/IrrigationTechnologiesComparisons.pdf (accessed May 2019).

17 FAO. (2016). Aquastat. FAO's Global Information System on Water and Agriculture. Available at: http://www.fao.org/aquastat/en/databases/maindatabase (accessed on 28 August 2019).

18 Fraiture, C. and Berndes, G. (2009). Biofuels and water. In R. Howarth and S. Bringezu (Eds.), Biofuels: Environmental Consequences and Interactions with Changing land Use (pp. 139–152). Gummersbach, German. Available at: https://ecommons.cornell.edu/handle/1813/46196 (accessed on August 28, 2019).

19 Gaviglio, A., Bertocchi, M., and Demartini, E. (2017). A Tool for the Sustainability Assessment of Farms : Selection, Adaptation and Use of Indicators for an Italian Case Study.

20 Gerbens‐Leenes, P., Hoekstra, A., and van der Meer, T. (2008). Water footprint of bio‐energy and other primary energy carriers, 29 (Value of Water, Research Report Series No. 29).

21 Goldemberg, J., Coelho, S.T., and Guardabassi, P. (2008). The sustainability of ethanol production from sugarcane. Energy Policy, 36(6), 2086–2097.

22 Hamzei, J., and Seyyedi, M. (2016). Energy use and input–output costs for sunflower production in sole and intercropping with soybean under different tillage systems. Soil and Tillage Research, 157, 73–82.

23 IEA. (2018). World Energy Balances 2018. Available at: https://webstore.iea.org/world‐energy‐balances‐2018 (accessed on 28 August 2019).

24 IGBP. (2015). International Geosphere‐Biosphere Programme. Available at: http://www.igbp.net/globalchange/greatacceleration.4.1b8ae20512db692f2a680001630.html (accessed on 28 August 2019).

25 International Organization for Standardization. (2006). ISO 14040:2006 ‐ Environmental management ‐ Life cycle assessment ‐ Principles and framework. International Organization for Standardization.

26 IRENA. (2019). International Renewable Energy Agency (IRENA). Available at: http://www.irena.org/ (accessed on May 19, 2019).

27 Iriarte, A., Rieradevall, J., and Gabarrell, X. (2010). Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production, 18(4), 336–345.

28 Jessen, H. (2012). Dropping Water Use. Ethanol Producer Magazine. Available at: http://www.ethanolproducer.com/articles/8860/dropping‐water‐use (accessed on August 28, 2019).

29 Kallivroussis, L., Natsis, A., and Papadakis, G. (2002). RD—Rural Development: The Energy Balance of Sunflower Production for Biodiesel in Greece. Biosystems Engineering, 81(3), 347–354.

30 Khan, S., Khan, M.A., Hanjra, M.A., and Mu, J. (2009). Pathways to reduce the environmental footprints of water and energy inputs in food production. Food Policy, 34(2), 141–149.

31  Kraatz, S., Reinemann, D.J., and Berg, W. (2009). Energy Inputs for Corn Production in Wisconsin and Germany. Available at: https://doi.org/10.13031/2013.28850 (accessed on 28 August 2019)

32 Kranz, W.L., Irmak, S., Donk, S.J. va.et al. (2008). Irrigation Management for Corn.

33 Kusek, G., Ozturk, H.H., and Akdemir, S. (2016). An assessment of energy use of different cultivation methods for sustainable rapeseed production. Journal of Cleaner Production, 112, 2772–2783.

34 Langeveld, J.W.A., and van de Ven, G.W.J. (2010). Principles of plant production. In H. Langeveld, J. Sanders, and M. Meeusen (Eds.), The Biobased Economy: Biofuels, Materials and Chemicals in the Post‐oil Era (1st ed., pp. 49–66). Bristol, UK: Earthscan.

35 Langeveld, J.W.A., Dixon, J., and Jaworski, J.F. (2010). Development perspectives of the biobased economy: A review. Crop Science, 50, S–142‐S‐151.

36 Le, P.V.V., Kumar, P., and Drewry, D.T. (2011). Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proceedings of the National Academy of Sciences, 108(37), 15085–15090.

37 Leseurre, L., Merea, C., Duprat de Paule, S., and Pinchart, A. (2014). Eco‐footprint: a new tool for the “Made in Chimex” considered approach. Green Chemistry, 16(3), 1139.

38 Levidow, L., Zaccaria, D., Maia, R. et al. (2014). Improving water‐efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management, 146, 84–94.

39 Liu, J., Zehnder, A., and Yang, H. (2007). Historical Trends in China’s Virtual Water Trade. Water International, 32(1), 78–90.

40 Madani, K., and Khatami, S. (2015). Water for Energy: Inconsistent Assessment Standards and Inability to Judge Properly. Current Sustainable/Renewable Energy Reports, 2(1), 10–16.

41 Manfredi, S. (2014). Methodology for life‐cycle based environmental sustainability assessment of non‐food biomass value chains.

42 Martin, M., Røyne, F., Ekvall, T., and Moberg, Å. (2018). Life cycle sustainability evaluations of bio‐based value chains: Reviewing the indicators from a Swedish perspective. Sustainability (Switzerland), 10(2).

43 Martins, A.A., Marques, F., Cameira, M. et al. (2018). Water footprint of microalgae cultivation in photobioreactor. Energy Procedia 153: 426–431.

44 Maupin, M.A., and Barber, N.L. (2005). Estimated withdrawals from principal aquifers in the United States, 2000. US Geological Survey Circular 1279.

45 Mckenna, P. (2009). Measuring Corn Ethanol’S Thirst for Water; MIT Technology Review. MIT: Cambridge, MA, USA, April 14.

46 Moreira, J.R. (2007). Water Use and Impacts Due Ethanol Production in Brazil. International Conference on Linkages in Energy and Water Use in Agriculture in Developing Countries, Organized by IWMI and FAO, ICRISAT, India, January 2007, 1–24.

47 Mousavi‐avval, S.H., Manandhar, A., and Shah, A. (2018). Fundamentals of energy analysis for crop production agriculture. Ohio State University Extension. Available at: https://ohioline.osu.edu/factsheet/fabe‐6621 (accessed on 29 December 2020)

48 Mousavi‐Avval, S.H., Rafiee, S., Sharifi, M. et al. (2017). Application of multi‐objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production. Journal of Cleaner Production, 140, 804–815.

49 Mousavi Avval, S.H., Rafiee, S., Jafari, A., and Mohammadi, A. (2011). Improving energy productivity of sunflower production using data envelopment analysis (DEA) approach. Journal of the Science of Food and Agriculture, 91(10), 1885–1892.

50 Nguyen, T.T.H., Kikuchi, Y., Noda, M., and Hirao, M. (2015). A New Approach for the Design and Assessment of Bio‐based Chemical Processes toward Sustainability. Industrial & Engineering Chemistry Research, 54(20), 5494–5504.

51 Pahlavan, R., Omid, M., Rafiee, S., and Mousavi‐Avval, S.H. (2012). Optimization of energy consumption for rose production in Iran. Energy for Sustainable Development, 16(2), 236–241.

52 Patel, A. D., Meesters, K., den Uil, H., de Jong, E., Blok, K., and Patel, M. K. (2012). Sustainability assessment of novel chemical processes at early stage: application to biobased processes. Energy & Environmental Science, 5(9), 8430–8444.

53 Phan, T. V. T., Gallardo, C., and Mane, J. (2015). GREEN MOTION: a new and easy to use green chemistry metric from laboratories to industry. Green Chemistry, 17, 2846.

54 Phillips, S., Aden, A., Jechura, J. et al. (2007). Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass.

55 Postel, S.L. (1998). Water for Food Production: Will There Be Enough in 2025? BioScience, 48(8), 629–637.

56 Ramedani, Z., Rafiee, S., and Heidari, M.D. (2011). An investigation on energy consumption and sensitivity analysis of soybean production farms. Energy, 36(11), 6340–6344.

57 REN21. (2018). Renewables 2018 Global Status Report.

58 Robins, J.G., Jensen, K.B., Peel, M.D., and Waldron, B.L. (2009). Establishment of warm‐season grasses in summer and damage in winter under supplementary irrigation in a semi‐arid environment at high elevation in western United States of America. Grass and Forage Science, 64(1), 42–48.

59 Ruiz‐Mercado, G.J., Smith, R. L., and Gonzalez, M.A. (2012). Sustainability Indicators for Chemical Processes: I. Taxonomy. Industrial & Engineering Chemistry Research, 51(5), 2309–2328.

60 Ruiz‐Mercado, G.J., Gonzalez, M.A., and Smith, R.L. (2013). Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study. Industrial & Engineering Chemistry Research, 52(20), 6747–6760.

61 Ruiz‐Mercado, G.J., Gonzalez, M.A., and Smith, R.L. (2014). Expanding GREENSCOPE beyond the gate: a green chemistry and life cycle perspective. Clean Technologies and Environmental Policy, 16(4), 703–717.

62  Saha, N.K., Balakrishnan, M., and Batra, V.S. (2005). Improving industrial water use : case study for an Indian distillery, 43, 163–174.

63 Saling, P., Kicherer, A., Dittrich‐Krämer, B. et al. (2002). Eco‐efficiency analysis by basf: the method. The International Journal of Life Cycle Assessment, 7(4), 203–218.

64 Saling, P., Schöneboom, J., Künast, C. et al. (2014). Assessment of Biodiversity within the Holistic Sustainability Evaluation Method of AgBalance. In 9th International Conference LCA of Food. San Francisco, CA.

65 Schmidt, I., Meurer, M., Saling, P. et al. (2004). SEEbalance®: Managing Sustainability of Products and Processes with the Socio‐Eco‐Efficiency Analysis by BASF. Greener Management International. Greenleaf Publishing.

66 Van Schoubroeck, S., Van Dael, M., Van Passel, S., and Malina, R. (2018). A review of sustainability indicators for biobased chemicals. Renewable and Sustainable Energy Reviews, 94 (June), 115–126.

67 Schwalbe, Z. (2017). Understanding Plant Water Use: Evapotranspiration (ET). Available at: https://coagmet.colostate.edu/extended_etr_about.php (accessed on 7 June 2019)

68 Sheldon, R.A. (2018). Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chemistry and Engineering, 6 (1), 32–48.

69 Sheldon, R.A., and Sanders, J.P.M. (2015). Toward concise metrics for the production of chemicals from renewable biomass. Catalysis Today, 239, 3–6.

70 Sikdar, S.K., Sengupta, D., and Mukherjee, R. (2017). Statistical Algorithms for Sustainability Measurement and Decision Making. In Measuring Progress Towards Sustainability (pp. 153–184). Cham: Springer International Publishing.

71 Stone, K., Hunt, P., Cantrell, K., and Ro, K. (2013). Biomass Feedstock Production Impact on Water Resource Availability. In B. Singh (Ed.), Biofuel Crop Sustainability (1st ed., pp. 239–260). New Delhi, India: Wiley Blackwell.

72 Texas Water Development Board. (2019). Agricultural Water Conservation Irrigation Water Use Management. Available at: http://levellandtexas.org/DocumentCenter/View/1097/AgBrochure2_irrigation?bidId= (accessed on 28 August 2019)

73 UNCTAD. (2014). United Nations Conference on Trade and Development. World investment report. Available at: https://unctad.org/en/PublicationsLibrary/wir2014_en.pdf (Accessed on 6 May 2019).

74 United Nations Industrial Development Organization. (2019). Renewable Energy in Industrial Applications. Available at: https://www.solarthermalworld.org/sites/gstec/files/unido_renewables_industrial_applications.pdf (Accessed on 6 May 2019).

75 University of Illinois Extension. (2009). Water Use for Ethanol Production. Available at: https://extension.illinois.edu/ethanol/wateruse.cfm (Accessed on 7 June 2019)

76 USGS. (2016). How much water is there on, in, and above the Earth? Retrieved 13 February 2019. Available at: https://water.usgs.gov/edu/earthhowmuch.html (accessed on 28 August 2019)

77 VanLoocke, A., Twine, T.E., Zeri, M., and Bernacchi, C.J. (2012). A regional comparison of water use efficiency for miscanthus, switchgrass and maize. Agricultural and Forest Meteorology, 164, 82–95.

78 Verones, F., Pfister, S., and Berger, M. (2015). Water Use Analysis. In Sustainability Assessment of Renewables‐Based Products (pp. 97–108). Chichester, UK: John Wiley & Sons, Ltd.

79 Waskom, R., Akhbari, M., and Grigg, N.S. (2014). US perspective on the water‐energy‐food nexus. Colorado Water Institute, Information Series, No. 116.

80 World Energy Council. (2016). World Energy Resources | 2016. Available at: https://www.worldenergy.org/publications/2016/world‐energy‐resources‐2016/ (accessed on 28 August 2019)

81 Wu, Y., and Liu, S. (2012). Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin. Biomass and Bioenergy, 36, 182–191.

82 WWF. (2006). A first estimate of the global supply potential for bioenergy. A briefing study commissioned by WWF. World Wiildlife Fund.

83 Yang, H., Zhou, Y., and Liu, J. (2009). Land and water requirements of biofuel and implications for food supply and the environment in China. Energy Policy 37, 1876–1885.

Water, Climate Change, and Sustainability

Подняться наверх