Читать книгу Endodontic Materials in Clinical Practice - Группа авторов - Страница 48
References
Оглавление1 1 Duncan, H.F., Galler, K.M., Tomson, P.L. et al. (2019). European Society of Endodontology position statement: management of deep caries and the exposed pulp. Int. Endod. J. 52 (7): 923–934.
2 2 Wolters, W.J., Duncan, H.F., Tomson, P.L. et al. (2017). Minimally invasive endodontics: a new diagnostic system for assessing pulpitis and subsequent treatment needs. Int. Endod. J. 50 (9): 825–829.
3 3 Randow, K. and Glantz, P.O. (1986). On cantilever loading of vital and non‐vital teeth. An experimental clinical study. Acta Odontol. Scand. 44 (5): 271–277.
4 4 Paphangkorakit, J. and Osborn, J.W. (1998). Discrimination of hardness by human teeth apparently not involving periodontal receptors. Arch. Oral Biol. 43 (1): 1–7.
5 5 Stanley, H.R. (1989). Pulp capping: conserving the dental pulp – can it be done? Is it worth it? Oral Surg. Oral Med. Oral Pathol. 68 (5): 628–639.
6 6 Elderton, R.J. (1993). Overtreatment with restorative dentistry: when to intervene? Int. Dent. J. 43 (1): 17–24.
7 7 Schwendicke, F. and Stolpe, M. (2014). Direct pulp capping after a carious exposure versus root canal treatment: a cost‐effectiveness analysis. J. Endod. 40 (11): 1764–1770.
8 8 Murray, P.E., Garcia‐Godoy, F., and Hargreaves, K.M. (2007). Regenerative endodontics: a review of current status and a call for action. J. Endod. 33 (4): 377–390.
9 9 Nair, P.N., Duncan, H.F., Pitt Ford, T.R., and Luder, H.U. (2008). Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: a randomized controlled trial. Int. Endod. J. 41 (2): 128–150.
10 10 Gronthos, S., Mankani, M., Brahim, J. et al. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 97 (25): 13625–13630.
11 11 Taha, N.A. and Khazali, M.A. (2017). Partial pulpotomy in mature permanent teeth with clinical signs indicative of irreversible pulpitis: a randomized clinical trial. J. Endod. 43 (9): 1417–1421.
12 12 Kakehashi, S., Stanley, H.R., and Fitzgerald, R.J. (1965). The effects of surgical exposures of dental pulps in germ‐free and conventional laboratory rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 20: 340–349.
13 13 Bernabe, E. and Sheiham, A. (2014). Age, period and cohort trends in caries of permanent teeth in four developed countries. Am. J. Public Health 104 (7): e115–e121.
14 14 Kassebaum, N.J., Bernabe, E., Dahiya, M. et al. (2015). Global burden of untreated caries: a systematic review and metaregression. J. Dent. Res. 94 (5): 650–658.
15 15 Sengupta, K., Christensen, L.B., Mortensen, L.H. et al. (2017). Trends in socioeconomic inequalities in oral health among 15‐year‐old Danish adolescents during 1995–2013: a nationwide, register‐based, repeated cross‐sectional study. Community Dent. Oral Epidemiol. 45 (5): 458–468.
16 16 Warfvinge, J. and Bergenholtz, G. (1986). Healing capacity of human and monkey dental pulps following experimentally‐induced pulpitis. Endod. Dent. Traumatol. 2 (6): 256–262.
17 17 Brannstrom, M. and Lind, P.O. (1965). Pulpal response to early dental caries. J. Dent. Res. 44 (5): 1045–1050.
18 18 Reeves, R. and Stanley, H.R. (1966). The relationship of bacterial penetration and pulpal pathosis in carious teeth. Oral Surg. Oral Med. Oral Pathol. 22 (1): 59–65.
19 19 Mjor, I.A. and Tronstad, L. (1974). The healing of experimentally induced pulpitis. Oral Surg. Oral Med. Oral Pathol. 38 (1): 115–121.
20 20 Bergenholtz, G., Cox, C.F., Loesche, W.J., and Syed, S.A. (1982). Bacterial leakage around dental restorations: its effect on the dental pulp. J. Oral Pathol. 11 (6): 439–450.
21 21 Schwendicke, F., Frencken, J.E., Bjorndal, L. et al. (2016). Managing carious lesions: consensus recommendations on carious tissue removal. Adv. Dent. Res. 28 (2): 58–67.
22 22 El‐Helali, R., Dowling, A.H., McGinley, E.L. et al. (2013). Influence of resin‐based composite restoration technique and endodontic access on cuspal deflection and cervical microleakage scores. J. Dent. 41 (3): 216–222.
23 23 Browne, R.M., Tobias, R.S., Crombie, I.K., and Plant, C.G. (1983). Bacterial microleakage and pulpal inflammation in experimental cavities. Int. Endod. J. 16 (4): 147–155.
24 24 Cox, C.F., Keall, C.L., Keall, H.J. et al. (1987). Biocompatibility of surface‐sealed dental materials against exposed pulps. J. Prosthet. Dent. 57 (1): 1–8.
25 25 Krifka, S., Seidenader, C., Hiller, K.A. et al. (2012). Oxidative stress and cytotoxicity generated by dental composites in human pulp cells. Clin. Oral Investig. 16 (1): 215–224.
26 26 Paranjpe, A., Cacalano, N.A., Hume, W.R., and Jewett, A. (2008). Mechanisms of N‐acetyl cysteine‐mediated protection from 2‐hydroxyethyl methacrylate‐induced apoptosis. J. Endod. 34 (10): 1191–1197.
27 27 Hashem, D., Mannocci, F., Patel, S. et al. (2015). Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: a randomized controlled clinical trial. J. Dent. Res. 94 (4): 562–568.
28 28 Buchalla, W. and Attin, T. (2007). External bleaching therapy with activation by heat, light or laser – a systematic review. Dent. Mater. 23 (5): 586–596.
29 29 Leonard, R.H. Jr., Smith, L.R., Garland, G.E. et al. (2007). Evaluation of side effects and patients' perceptions during tooth bleaching. J. Esthet. Restor. Dent. 19 (6): 355–364; disc. 65–66.
30 30 Robertson, W.D. and Melfi, R.C. (1980). Pulpal response to vital bleaching procedures. J. Endod. 6 (7): 645–649.
31 31 Simon, S., Copper, P.R., Berdal, A. et al. (2009). Understanding pulp biology for routine clinical practice. ENDO Endodontic Pract. Today 3 (3): 171–184.
32 32 Lesot, H., Smith, A.J., Tziafas, D. et al. (1994). Biologically active molecules and dental tissue repair: a comparative review of reactionary and reparative dentinogenesis with the induction of odontoblast differentiation in vitro. Cells Mater. 4: 199–218.
33 33 Smith, A.J., Cassidy, N., Perry, H. et al. (1995). Reactionary dentinogenesis. Int. J. Dev. Biol. 39 (1): 273–280.
34 34 Ricucci, D., Loghin, S., and Siqueira, J.F. Jr. (2014). Correlation between clinical and histologic pulp diagnoses. J. Endod. 40 (12): 1932–1939.
35 35 Yoshiba, N., Edanami, N., Tohma, A. et al. (2018). Detection of bone marrow‐derived fibrocytes in human dental pulp repair. Int. Endod. J. 51 (11): 1187–1195.
36 36 Cassidy, N., Fahey, M., Prime, S.S., and Smith, A.J. (1997). Comparative analysis of transforming growth factor‐beta isoforms 1–3 in human and rabbit dentine matrices. Arch. Oral Biol. 42 (3): 219–223.
37 37 Smith, A.J. (2003). Vitality of the dentin–pulp complex in health and disease: growth factors as key mediators. J. Dent. Educ. 67 (6): 678–689.
38 38 Smith, A.J., Duncan, H.F., Diogenes, A. et al. (2016). Exploiting the bioactive properties of the dentin–pulp complex in regenerative endodontics. J. Endod. 42 (1): 47–56.
39 39 Cooper, P.R., Takahashi, Y., Graham, L.W. et al. (2010). Inflammation–regeneration interplay in the dentine–pulp complex. J. Dent. 38 (9): 687–697.
40 40 Couve, E., Osorio, R., and Schmachtenberg, O. (2013). The amazing odontoblast: activity, autophagy, and aging. J. Dent. Res. 92 (9): 765–772.
41 41 Huang, T.H., Yang, C.C., Ding, S.J. et al. (2005). Inflammatory cytokines reaction elicited by root‐end filling materials. J. Biomed. Mater. Res. B Appl. Biomater. 73 (1): 123–128.
42 42 Rutherford, R.B., Wahle, J., Tucker, M. et al. (1993). Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein‐1. Arch. Oral Biol. 38 (7): 571–576.
43 43 Tomson, P.L., Grover, L.M., Lumley, P.J. et al. (2007). Dissolution of bio‐active dentine matrix components by mineral trioxide aggregate. J. Dent. 35 (8): 636–642.
44 44 Graham, L., Cooper, P.R., Cassidy, N. et al. (2006). The effect of calcium hydroxide on solubilisation of bio‐active dentine matrix components. Biomaterials 27 (14): 2865–2873.
45 45 Duncan, H.F., Smith, A.J., Fleming, G.J. et al. (2017). Release of bio‐active dentine extracellular matrix components by histone deacetylase inhibitors (HDACi). Int. Endod. J. 50 (1): 24–38.
46 46 Giraud, T., Jeanneau, C., Rombouts, C. et al. (2019). Pulp capping materials modulate the balance between inflammation and regeneration. Dent. Mater. 35 (1): 24–35.
47 47 Ferracane, J.L., Cooper, P.R., and Smith, A.J. (2010). Can interaction of materials with the dentin‐pulp complex contribute to dentin regeneration? Odontology 98 (1): 2–14.
48 48 Galler, K.M. and Widbiller, M. (2017). Perspectives for cell‐homing approaches to engineer dental pulp. J. Endod. 43 (9S): S40–S45.
49 49 Tran, X.V., Gorin, C., Willig, C. et al. (2012). Effect of a calcium‐silicate‐based restorative cement on pulp repair. J. Dent. Res. 91 (12): 1166–1171.
50 50 Sangwan, P., Sangwan, A., Duhan, J., and Rohilla, A. (2013). Tertiary dentinogenesis with calcium hydroxide: a review of proposed mechanisms. Int. Endod. J. 46 (1): 3–19.
51 51 Duncan, H.F., Smith, A.J., Fleming, G.J., and Cooper, P.R. (2013). Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells. Exp. Cell Res. 319 (10): 1534–1543.
52 52 Barthel, C.R., Rosenkranz, B., Leuenberg, A., and Roulet, J.F. (2000). Pulp capping of carious exposures: treatment outcome after 5 and 10 years: a retrospective study. J. Endod. 26 (9): 525–528.
53 53 Mejare, I. and Cvek, M. (1993). Partial pulpotomy in young permanent teeth with deep carious lesions. Endod. Dent. Traumatol. 9 (6): 238–242.
54 54 Seltzer, S., Bender, I.B., and Ziontz, M. (1963). The interrelationship of pulp and periodontal disease. Oral Surg. Oral Med. Oral Pathol. 16: 1474–1490.
55 55 AAE (2012). Glossary of Endodontic Terms, 8e. Chicago, IL: American Association of Endodontists.
56 56 Garfunkel, A., Sela, J., and Ulmansky, M. (1973). Dental pulp pathosis. Clinicopathologic correlations based on 109 cases. Oral Surg. Oral Med. Oral Pathol. 35 (1): 110–117.
57 57 Dummer, P.M., Hicks, R., and Huws, D. (1980). Clinical signs and symptoms in pulp disease. Int. Endod. J. 13 (1): 27–35.
58 58 Michaelson, P.L. and Holland, G.R. (2002). Is pulpitis painful? Int. Endod. J. 35 (10): 829–832.
59 59 Bjorndal, L., Simon, S., Tomson, P.L., and Duncan, H.F. (2019). Management of deep caries and the exposed pulp. Int. Endod. J. 52 (7): 949–973.
60 60 Cvek, M. (1978). A clinical report on partial pulpotomy and capping with calcium hydroxide in permanent incisors with complicated crown fracture. J. Endod. 4 (8): 232–237.
61 61 Al‐Hiyasat, A.S., Barrieshi‐Nusair, K.M., and Al‐Omari, M.A. (2006). The radiographic outcomes of direct pulp‐capping procedures performed by dental students: a retrospective study. J. Am. Dent. Assoc. 137 (12): 1699–1705.
62 62 Bjorndal, L., Fransson, H., Bruun, G. et al. (2017). Randomized clinical trials on deep carious lesions: 5‐year follow‐up. J. Dent. Res. 96 (7): 747–753.
63 63 Marques, M.S., Wesselink, P.R., and Shemesh, H. (2015). Outcome of direct pulp capping with mineral trioxide aggregate: a prospective study. J. Endod. 41 (7): 1026–1031.
64 64 Mente, J., Hufnagel, S., Leo, M. et al. (2014). Treatment outcome of mineral trioxide aggregate or calcium hydroxide direct pulp capping: long‐term results. J. Endod. 40 (11): 1746–1751.
65 65 Ricketts, D.N., Kidd, E.A., Innes, N., and Clarkson, J. (2006). Complete or ultraconservative removal of decayed tissue in unfilled teeth. Cochrane Database Syst. Rev. (3): CD003808.
66 66 Bjorndal, L., Reit, C., Bruun, G. et al. (2010). Treatment of deep caries lesions in adults: randomized clinical trials comparing stepwise vs. direct complete excavation, and direct pulp capping vs. partial pulpotomy. Eur. J. Oral Sci. 118 (3): 290–297.
67 67 Innes, N.P., Frencken, J.E., Bjorndal, L. et al. (2016). Managing carious lesions: consensus recommendations on terminology. Adv. Dent. Res. 28 (2): 49–57.
68 68 Hilton, T.J., Ferracane, J.L., and Mancl, L. (2013). Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J. Dent. Res. 92 (7 Suppl): 16s–22s.
69 69 Bogen, G., Kim, J.S., and Bakland, L.K. (2008). Direct pulp capping with mineral trioxide aggregate: an observational study. J. Am. Dent. Assoc. 139 (3): 305–315; quiz 315.
70 70 Bergenholtz, G. (2000). Evidence for bacterial causation of adverse pulpal responses in resin‐based dental restorations. Crit. Rev. Oral Biol. Med. 11 (4): 467–480.
71 71 Schroder, U. (1985). Effects of calcium hydroxide‐containing pulp‐capping agents on pulp cell migration, proliferation, and differentiation. J. Dent. Res. 64: 541–548.
72 72 Cvek, M., Granath, L., Cleaton‐Jones, P., and Austin, J. (1987). Hard tissue barrier formation in pulpotomized monkey teeth capped with cyanoacrylate or calcium hydroxide for 10 and 60 minutes. J. Dent. Res. 66 (6): 1166–1174.
73 73 Burke, F.J.T. and Lucarotti, P.S.K. (2018). The ultimate guide to restoration longevity in England and Wales. Part 10: Key findings from a ten million restoration dataset. Br. Dent. J. 225 (11): 1011–1018.
74 74 Elderton, R.J. and Nuttall, N.M. (1983). Variation among dentists in planning treatment. Br. Dent. J. 154 (7): 201–206.
75 75 Murray, P.E., Hafez, A.A., Smith, A.J., and Cox, C.F. (2002). Hierarchy of pulp capping and repair activities responsible for dentin bridge formation. Am. J. Dent. 15 (4): 236–243.
76 76 Zach, L. (1972). Pulp lability and repair; effect of restorative procedures. Oral Surg. Oral Med. Oral Pathol. 33 (1): 111–121.
77 77 Murray, P.E., Smyth, T.W., About, I. et al. (2002). The effect of etching on bacterial microleakage of an adhesive composite restoration. J. Dent. 30 (1): 29–36.
78 78 Hilton, T.J. (1996). Cavity sealers, liners, and bases: current philosophies and indications for use. Oper. Dent. 21 (4): 134–146.
79 79 Maltz, M., Jardim, J.J., Mestrinho, H.D. et al. (2013). Partial removal of carious dentine: a multicenter randomized controlled trial and 18‐month follow‐up results. Caries Res. 47 (2): 103–109.
80 80 Ali, A.H., Koller, G., Foschi, F. et al. (2018). Self‐limiting versus conventional caries removal: a randomized clinical trial. J. Dent. Res. 97 (11): 1207–1213.
81 81 Granath, L.E. and Hagman, G. (1971). Experimental pulpotomy in human bicuspids with reference to cutting technique. Acta Odontol. Scand. 29 (2): 155–163.
82 82 Kundzina, R., Stangvaltaite, L., Eriksen, H.M., and Kerosuo, E. (2017). Capping carious exposures in adults: a randomized controlled trial investigating mineral trioxide aggregate versus calcium hydroxide. Int. Endod. J. 50 (10): 924–932.
83 83 Harms, C.S., Schafer, E., and Dammaschke, T. (2019). Clinical evaluation of direct pulp capping using a calcium silicate cement‐treatment outcomes over an average period of 2.3 years. Clin. Oral Investig. 23 (9): 3491–3499.
84 84 Cushley, S., Duncan, H.F., Lappin, M.J. et al. (2019). Pulpotomy for mature carious teeth with symptoms of irreversible pulpitis: a systematic review. J. Dent. 88: 103158.
85 85 Mente, J., Geletneky, B., Ohle, M. et al. (2010). Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome. J. Endod. 36 (5): 806–813.
86 86 Massler, M. (1972). Therapy conductive to healing of the human pulp. Oral Surg. Oral Med. Oral Pathol. 34 (1): 122–130.
87 87 Matsuo, T., Nakanishi, T., Shimizu, H., and Ebisu, S. (1996). A clinical study of direct pulp capping applied to carious‐exposed pulps. J. Endod. 22 (10): 551–556.
88 88 Pfaf, P. (1756). Abhandlung von den Zähnen des menschlichen Körpers und deren Krankheiten. Berlin: Haude und Spener.
89 89 Heys, D.R., Cox, C.F., Heys, R.J., and Avery, J.K. (1981). Histological considerations of direct pulp capping agents. J. Dent. Res. 60 (7): 1371–1379.
90 90 Stanley, H.R. and Lundy, T. (1972). Dycal therapy for pulp exposures. Oral Surg. Oral Med. Oral Pathol. 34 (5): 818–827.
91 91 Shovelton, D.S., Friend, L.A., Kirk, E.E., and Rowe, A.H. (1971). The efficacy of pulp capping materials. A comparative trial. Br. Dent. J. 130 (9): 385–391.
92 92 Horsted‐Bindslev, P., Vilkinis, V., and Sidlauskas, A. (2003). Direct capping of human pulps with a dentin bonding system or with calcium hydroxide cement. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 96 (5): 591–600.
93 93 Cowan, A. (1966). Treatment of exposed vital pulps with a corticosteroid antibiotic agent. Br. Dent. J. 120 (11): 521–532.
94 94 Bhaskar, S.N., Beasley, J.D., Ward, J.P., and Cutright, D.E. (1972). Human pulp capping with isobutyl cyanoacrylate. J. Dent. Res. 51 (1): 58–61.
95 95 do Nascimento, A.B., Fontana, U.F., Teixeira, H.M., and Costa, C.A. (2000). Biocompatibility of a resin‐modified glass‐ionomer cement applied as pulp capping in human teeth. Am. J. Dent. 13 (1): 28–34.
96 96 Torabinejad, M. and Chivian, N. (1999). Clinical applications of mineral trioxide aggregate. J. Endod. 25 (3): 197–205.
97 97 Hermann, B. (1920). Calcium hydroxyd als mitten zum behandeln und fullen von Wurzelkanallen. Dissertation. Wursburg. (Printed in: Malo, P.R.T., Kessler Nieto, F., and Vadillo, M.V.M. (1987). Hidroxido de calcio y apicoformacion. Revista Espanola de Endodoncia 5: 41–61).
98 98 Glass, R.L. and Zander, H.A. (1949). Pulp healing. J. Dent. Res. 28 (2): 97–107.
99 99 Schroder, U. (1972). Evaluation of healing following experimental pulpotomy of intact human teeth and capping with calcium hydroxide. Odontol. Revy 23 (3): 329–340.
100 100 Schroder, U. (1973). Effect of an extra‐pulpal blood clot on healing following experimental pulpotomy and capping with calcium hydroxide. Odontol. Revy 24 (3): 257–268.
101 101 Tronstad, L. (1974). Reaction of the exposed pulp to Dycal treatment. Oral Surg. Oral Med. Oral Pathol. 38 (6): 945–953.
102 102 Pitt Ford, T.R. (1979). Pulpal response to Procal for capping exposures in dog's teeth. J. Br. Endod. Soc. 12 (2): 67–72.
103 103 Pitt Ford, T.R. and Roberts, G.J. (1991). Immediate and delayed direct pulp capping with the use of a new visible light‐cured calcium hydroxide preparation. Oral Surg. Oral Med. Oral Pathol. 71 (3): 338–342.
104 104 Baume, L.J. and Holz, J. (1981). Long term clinical assessment of direct pulp capping. Int. Dent. J. 31 (4): 251–260.
105 105 Brannstrom, M., Nyborg, H., and Stromberg, T. (1979). Experiments with pulp capping. Oral Surg. Oral Med. Oral Pathol. 48 (4): 347–352.
106 106 Cox, C.F., Bergenholtz, G., Fitzgerald, M. et al. (1982). Capping of the dental pulp mechanically exposed to the oral microflora – a 5 week observation of wound healing in the monkey. J. Oral Pathol. 11 (4): 327–339.
107 107 Cox, C.F., Bergenholtz, G., Heys, D.R. et al. (1985). Pulp capping of dental pulp mechanically exposed to oral microflora: a 1–2 year observation of wound healing in the monkey. J. Oral Pathol. 14 (2): 156–168.
108 108 Pitt Ford, T.R. (1985). Pulpal response to a calcium hydroxide material for capping exposures. Oral Surg. Oral Med. Oral Pathol. 59 (2): 194–197.
109 109 Aeinehchi, M., Eslami, B., Ghanbariha, M., and Saffar, A.S. (2003). Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp‐capping agents in human teeth: a preliminary report. Int. Endod. J. 36 (3): 225–231.
110 110 Chacko, V. and Kurikose, S. (2006). Human pulpal response to mineral trioxide aggregate (MTA): a histologic study. J. Clin. Pediatr. Dent. 30 (3): 203–209.
111 111 Lu, Y., Liu, T., Li, H., and Pi, G. (2008). Histological evaluation of direct pulp capping with a self‐etching adhesive and calcium hydroxide on human pulp tissue. Int. Endod. J. 41 (8): 643–650.
112 112 Cox, C.F., Subay, R.K., Ostro, E. et al. (1996). Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper. Dent. 21 (1): 4–11.
113 113 Smith, A.J. (2002). Pulpal responses to caries and dental repair. Caries Res. 36 (4): 223–232.
114 114 Pisanti, S. and Sciaky, I. (1964). Origin of calcium in the repair wall after pulp exposure in the dog. J. Dent. Res. 43: 641–644.
115 115 Sciaky, I. and Pisanti, S. (1960). Localization of calcium placed over amputated pulps in dogs' teeth. J. Dent. Res. 39: 1128–1132.
116 116 Kardos, T.B., Hunter, A.R., Hanlin, S.M., and Kirk, E.E. (1998). Odontoblast differentiation: a response to environmental calcium? Endod. Dent. Traumatol. 14 (3): 105–111.
117 117 Kakehashi, S., Stanley, H.R., and Fitzgerald, R. (1969). The exposed germ‐free pulp: effects of topical corticosteroid medication and restoration. Oral Surg. Oral Med. Oral Pathol. 27 (1): 60–67.
118 118 Dammaschke, T., Leidinger, J., and Schafer, E. (2010). Long‐term evaluation of direct pulp capping – treatment outcomes over an average period of 6.1 years. Clin. Oral Investig. 14 (5): 559–567.
119 119 Pereira, J.C., Manfio, A.P., Franco, E.B., and Lopes, E.S. (1990). Clinical evaluation of Dycal under amalgam restorations. Am. J. Dent. 3 (2): 67–70.
120 120 Novickas, D., Fiocca, V.L., and Grajower, R. (1989). Linings and caries in retrieved permanent teeth with amalgam restorations. Oper. Dent. 14 (1): 33–39.
121 121 Cox, C.F. and Suzuki, S. (1994). Re‐evaluating pulp protection: calcium hydroxide liners vs. cohesive hybridization. J. Am. Dent. Assoc. 125 (7): 823–831.
122 122 Kanca, J. 3rd. (1996). Replacement of a fractured incisor fragment over pulpal exposure: a long‐term case report. Quintessence Int. 27 (12): 829–832.
123 123 Olmez, A., Oztas, N., Basak, F., and Sabuncuoglu, B. (1998). A histopathologic study of direct pulp‐capping with adhesive resins. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 86 (1): 98–103.
124 124 Tsuneda, Y., Hayakawa, T., Yamamoto, H. et al. (1995). A histopathological study of direct pulp capping with adhesive resins. Oper. Dent. 20 (6): 223–229.
125 125 Cox, C.F., Hafez, A.A., Akimoto, N. et al. (1998). Biocompatibility of primer, adhesive and resin composite systems on non‐exposed and exposed pulps of non‐human primate teeth. Am. J. Dent. 11: S55–S63.
126 126 Fujitani, M., Shibata, S., Van Meerbeek, B. et al. (2002). Direct adhesive pulp capping: pulpal healing and ultra‐morphology of the resin‐pulp interface. Am. J. Dent. 15 (6): 395–402.
127 127 Pameijer, C.H. and Stanley, H.R. (1998). The disastrous effects of the ‘total etch’ technique in vital pulp capping in primates. Am. J. Dent. 11: S45–S54.
128 128 Hilton, T.J. (2009). Keys to clinical success with pulp capping: a review of the literature. Oper. Dent. 34 (5): 615–625.
129 129 de Souza Costa, C.A., do Nascimento, A.B., and Teixeira, H.M. (2002). Response of human pulps following acid conditioning and application of a bonding agent in deep cavities. Dent. Mater. 18 (7): 543–551.
130 130 Abebe, W., Pashley, D.H., and Rueggeberg, F.A. (2005). Vasorelaxant effect of resin‐based, single‐bottle dentin bonding systems. J. Endod. 31 (3): 194–197.
131 131 Jontell, M., Hanks, C.T., Bratel, J., and Bergenholtz, G. (1995). Effects of unpolymerized resin components on the function of accessory cells derived from the rat incisor pulp. J. Dent. Res. 74 (5): 1162–1167.
132 132 Lee, S.J., Monsef, M., and Torabinejad, M. (1993). Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J. Endod. 19 (11): 541–544.
133 133 Torabinejad, M., White, D. J., inventors; Loma Linda University, assignee. (1995). Tooth filling material and method of use. US patent 5415547.
134 134 Parirokh, M. and Torabinejad, M. (2010). Mineral trioxide aggregate: a comprehensive literature review – Part III: Clinical applications, drawbacks, and mechanism of action. J. Endod. 36 (3): 400–413.
135 135 Lenherr, P., Allgayer, N., Weiger, R. et al. (2012). Tooth discoloration induced by endodontic materials: a laboratory study. Int. Endod. J. 45 (10): 942–949.
136 136 Ioannidis, K., Mistakidis, I., Beltes, P., and Karagiannis, V. (2013). Spectrophotometric analysis of coronal discolouration induced by grey and white MTA. Int. Endod. J. 46 (2): 137–144.
137 137 Oliveira, M.G., Xavier, C.B., Demarco, F.F. et al. (2007). Comparative chemical study of MTA and Portland cements. Braz. Dent. J. 18 (1): 3–7.
138 138 Camilleri, J., Kralj, P., Veber, M., and Sinagra, E. (2012). Characterization and analyses of acid‐extractable and leached trace elements in dental cements. Int. Endod. J. 45 (8): 737–743.
139 139 Song, J.S., Mante, F.K., Romanow, W.J., and Kim, S. (2006). Chemical analysis of powder and set forms of Portland cement, gray ProRoot MTA, white ProRoot MTA, and gray MTA‐Angelus. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 102 (6): 809–815.
140 140 Santos, A.D., Araujo, E.B., Yukimitu, K. et al. (2008). Setting time and thermal expansion of two endodontic cements. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106 (3): e77–e79.
141 141 Duarte, M.A., De Oliveira Demarchi, A.C., Yamashita, J.C. et al. (2005). Arsenic release provided by MTA and Portland cement. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 99 (5): 648–650.
142 142 De‐Deus, G., de Souza, M.C., Sergio Fidel, R.A. et al. (2009). Negligible expression of arsenic in some commercially available brands of Portland cement and mineral trioxide aggregate. J. Endod. 35 (6): 887–890.
143 143 Camilleri, J., Sorrentino, F., and Damidot, D. (2015). Characterization of un‐hydrated and hydrated BioAggregate™ and MTA Angelus™. Clin. Oral Investig. 19 (3): 689–698.
144 144 Camilleri, J., Sorrentino, F., and Damidot, D. (2013). Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent. Mater. 29 (5): 580–593.
145 145 Grech, L., Mallia, B., and Camilleri, J. (2013). Investigation of the physical properties of tricalcium silicate cement‐based root‐end filling materials. Dent. Mater. 29 (2): e20–e28.
146 146 Odler, I. (1993). Hydration, setting and hardening of Portland cement. In: Lea's Chemistry of Cement on Concrete (ed. P.C. Hewlett), 241–297. Oxford: Elsevier Butterworth‐Heinemann.
147 147 Fridland, M. and Rosado, R. (2003). Mineral trioxide aggregate (MTA) solubility and porosity with different water‐to‐powder ratios. J. Endod. 29 (12): 814–817.
148 148 Torabinejad, M. and Parirokh, M. (2010). Mineral trioxide aggregate: a comprehensive literature review – Part II: Leakage and biocompatibility investigations. J. Endod. 36 (2): 190–202.
149 149 Torabinejad, M., Hong, C.U., Pitt Ford, T.R., and Kettering, J.D. (1995). Antibacterial effects of some root end filling materials. J. Endod. 21 (8): 403–406.
150 150 Estrela, C., Bammann, L.L., Estrela, C.R. et al. (2000). Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Braz. Dent. J. 11 (1): 3–9.
151 151 Al‐Hezaimi, K., Al‐Shalan, T.A., Naghshbandi, J. et al. (2006). Antibacterial effect of two mineral trioxide aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro. J. Endod. 32 (11): 1053–1056.
152 152 Stowe, T.J., Sedgley, C.M., Stowe, B., and Fenno, J.C. (2004). The effects of chlorhexidine gluconate (0.12%) on the antimicrobial properties of tooth‐colored ProRoot mineral trioxide aggregate. J. Endod. 30 (6): 429–431.
153 153 Holt, D.M., Watts, J.D., Beeson, T.J. et al. (2007). The anti‐microbial effect against enterococcus faecalis and the compressive strength of two types of mineral trioxide aggregate mixed with sterile water or 2% chlorhexidine liquid. J. Endod. 33 (7): 844–847.
154 154 Hernandez, E.P., Botero, T.M., Mantellini, M.G. et al. (2005). Effect of ProRoot MTA mixed with chlorhexidine on apoptosis and cell cycle of fibroblasts and macrophages in vitro. Int. Endod. J. 38 (2): 137–143.
155 155 Rechenberg, D.K., De‐Deus, G., and Zehnder, M. (2011). Potential systematic error in laboratory experiments on microbial leakage through filled root canals: review of published articles. Int. Endod. J. 44 (3): 183–194.
156 156 Wu, M.K. and Wesselink, P.R. (1993). Endodontic leakage studies reconsidered. Part I. Methodology, application and relevance. Int. Endod. J. 26 (1): 37–43.
157 157 De‐Deus, G. (2008). New directions in old leakage methods. Int. Endod. J. 41 (8): 720–721; disc. 1–3.
158 158 Torabinejad, M., Higa, R.K., McKendry, D.J., and Pitt Ford, T.R. (1994). Dye leakage of four root end filling materials: effects of blood contamination. J. Endod. 20 (4): 159–163.
159 159 Martell, B. and Chandler, N.P. (2002). Electrical and dye leakage comparison of three root‐end restorative materials. Quintessence Int. 33 (1): 30–34.
160 160 Wu, M.K., Kontakiotis, E.G., and Wesselink, P.R. (1998). Long‐term seal provided by some root‐end filling materials. J. Endod. 24 (8): 557–560.
161 161 Karlovic, Z., Pezelj‐Ribaric, S., Miletic, I. et al. (2005). Erbium:YAG laser versus ultrasonic in preparation of root‐end cavities. J. Endod. 31 (11): 821–823.
162 162 Fischer, E.J., Arens, D.E., and Miller, C.H. (1998). Bacterial leakage of mineral trioxide aggregate as compared with zinc‐free amalgam, intermediate restorative material, and Super‐EBA as a root‐end filling material. J. Endod. 24 (3): 176–179.
163 163 Tang, H.M., Torabinejad, M., and Kettering, J.D. (2002). Leakage evaluation of root end filling materials using endotoxin. J. Endod. 28 (1): 5–7.
164 164 Ford, T.R., Torabinejad, M., Abedi, H.R. et al. (1996). Using mineral trioxide aggregate as a pulp‐capping material. J. Am. Dent. Assoc. 127 (10): 1491–1494.
165 165 Keiser, K., Johnson, C.C., and Tipton, D.A. (2000). Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J. Endod. 26 (5): 288–291.
166 166 Faraco, I.M. Jr. and Holland, R. (2001). Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dent. Traumatol. 17 (4): 163–166.
167 167 Asgary, S., Eghbal, M.J., Parirokh, M. et al. (2008). A comparative study of histologic response to different pulp capping materials and a novel endodontic cement. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106 (4): 609–614.
168 168 Kuratate, M., Yoshiba, K., Shigetani, Y. et al. (2008). Immunohistochemical analysis of nestin, osteopontin, and proliferating cells in the reparative process of exposed dental pulp capped with mineral trioxide aggregate. J. Endod. 34 (8): 970–974.
169 169 Accorinte Mde, L., Holland, R., Reis, A. et al. (2008). Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp‐capping agents in human teeth. J. Endod. 34 (1): 1–6.
170 170 Min, K.S., Park, H.J., Lee, S.K. et al. (2008). Effect of mineral trioxide aggregate on dentin bridge formation and expression of dentin sialoprotein and heme oxygenase‐1 in human dental pulp. J. Endod. 34 (6): 666–670.
171 171 Moghaddame‐Jafari, S., Mantellini, M.G., Botero, T.M. et al. (2005). Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J. Endod. 31 (5): 387–391.
172 172 Masuda‐Murakami, Y., Kobayashi, M., Wang, X. et al. (2010). Effects of mineral trioxide aggregate on the differentiation of rat dental pulp cells. Acta Histochem. 112 (5): 452–458.
173 173 Simon, S., Cooper, P., Smith, A. et al. (2008). Evaluation of a new laboratory model for pulp healing: preliminary study. Int. Endod. J. 41 (9): 781–790.
174 174 Laurent, P., Camps, J., and About, I. (2012). Biodentine(TM) induces TGF‐beta1 release from human pulp cells and early dental pulp mineralization. Int. Endod. J. 45 (5): 439–448.
175 175 Sarkar, N.K., Caicedo, R., Ritwik, P. et al. (2005). Physicochemical basis of the biologic properties of mineral trioxide aggregate. J. Endod. 31 (2): 97–100.
176 176 Reyes‐Carmona, J.F., Felippe, M.S., and Felippe, W.T. (2009). Biomineralization ability and interaction of mineral trioxide aggregate and white Portland cement with dentin in a phosphate‐containing fluid. J. Endod. 35 (5): 731–736.
177 177 Tomson, P.L., Lumley, P.J., Alexander, M.Y. et al. (2013). Hepatocyte growth factor is sequestered in dentine matrix and promotes regeneration‐associated events in dental pulp cells. Cytokine 61 (2): 622–629.
178 178 Tomson, P.L., Lumley, P.J., Smith, A.J., and Cooper, P.R. (2016). Growth factor release from dentine matrix by pulp capping agents promote pulp tissue repair‐associated events. Int. Endod. J. 50 (3): 281–292.
179 179 Gandolfi, M.G., Siboni, F., and Prati, C. (2012). Chemical‐physical properties of TheraCal, a novel light‐curable MTA‐like material for pulp capping. Int. Endod. J. 45 (6): 571–579.
180 180 Camilleri, J., Laurent, P., and About, I. (2014). Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate‐based dentin replacement material after pulp capping in entire tooth cultures. J. Endod. 40 (11): 1846–1854.
181 181 Nilsen, B.W., Jensen, E., Ortengren, U., and Michelsen, V.B. (2017). Analysis of organic components in resin‐modified pulp capping materials: critical considerations. Eur. J. Oral Sci. 125 (3): 183–194.
182 182 Gomes‐Filho, J.E., de Faria, M.D., Bernabe, P.F. et al. (2008). Mineral trioxide aggregate but not light‐cure mineral trioxide aggregate stimulated mineralization. J. Endod. 34 (1): 62–65.
183 183 Koutroulis, A., Kuehne, S.A., Cooper, P.R., and Camilleri, J. (2019). The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Sci. Rep. 9 (1): 19019.
184 184 Gandolfi, M.G., Siboni, F., Botero, T. et al. (2015). Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J. Appl. Biomater. Funct. Mater. 13 (1): 43–60.
185 185 Yamamoto, S., Han, L., Noiri, Y., and Okiji, T. (2017). Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement. Int. Endod. J. 50 (Suppl. 2): e73–e82.
186 186 Hebling, J., Lessa, F.C., Nogueira, I. et al. (2009). Cytotoxicity of resin‐based light‐cured liners. Am. J. Dent. 22 (3): 137–142.
187 187 Jeanneau, C., Laurent, P., Rombouts, C. et al. (2017). Light‐cured tricalcium silicate toxicity to the dental pulp. J. Endod. 43 (12): 2074–2080.
188 188 Lee, H., Shin, Y., Kim, S.O. et al. (2015). Comparative study of pulpal responses to pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in dogs' teeth. J. Endod. 41 (8): 1317–1324.
189 189 Bakhtiar, H., Nekoofar, M.H., Aminishakib, P. et al. (2017). Human pulp responses to partial pulpotomy treatment with TheraCal as compared with biodentine and ProRoot MTA: a clinical trial. J. Endod. 43 (11): 1786–1791.
190 190 Berzins, D.W., Abey, S., Costache, M.C. et al. (2010). Resin‐modified glass‐ionomer setting reaction competition. J. Dent. Res. 89 (1): 82–86.
191 191 Schmalz, G., Schweikl, H., Esch, J., and Hiller, K.A. (1996). Evaluation of a dentin barrier test by cyctotoxicity testing of various dental cements. J. Endod. 22 (3): 112–115.
192 192 de Souza Costa, C.A., Hebling, J., Garcia‐Godoy, F., and Hanks, C.T. (2003). In vitro cytotoxicity of five glass‐ionomer cements. Biomaterials 24 (21): 3853–3858.
193 193 Heys, R.J. and Fitzgerald, M. (1991). Microleakage of three cement bases. J. Dent. Res. 70 (1): 55–58.
194 194 Mickenautsch, S., Yengopal, V., and Banerjee, A. (2010). Pulp response to resin‐modified glass ionomer and calcium hydroxide cements in deep cavities: a quantitative systematic review. Dent. Mater. 26 (8): 761–770.
195 195 Ribeiro, A.P.D., Sacono, N.T., Soares, D.G. et al. (2019). Human pulp response to conventional and resin‐modified glass ionomer cements applied in very deep cavities. Clin. Oral Invest. 24: 1739–1748.
196 196 Kunert, M. and Lukomska‐Szymanska, M. (2020). Bio‐inductive materials in direct and indirect pulp capping – a review article. Materials (Basel) 13 (5): 1204.
197 197 Benetti, A.R., Michou, S., Larsen, L. et al. (2019). Adhesion and marginal adaptation of a claimed bioactive, restorative material. Biomater. Investig. Dent. 6 (1): 90–98.
198 198 May, E. and Donly, K.J. (2017). Fluoride release and re‐release from a bioactive restorative material. Am. J. Dent. 30 (6): 305–308.
199 199 Hashem, D., Mannocci, F., Patel, S. et al. (2019). Evaluation of the efficacy of calcium silicate vs. glass ionomer cement indirect pulp capping and restoration assessment criteria: a randomised controlled clinical trial – 2‐year results. Clin. Oral Investig. 23 (4): 1931–1939.
200 200 Hench, L.L. (2006). The story of Bioglass. J. Mater. Sci. Mater. Med. 17 (11): 967–978.
201 201 Hench, L.L., Xynos, I.D., Buttery, L.D., and Polak, J.M. (2000). Bioactive materials to control cell cycle. Mater. Res. Innovat. 3 (6): 313–323.
202 202 Xynos, I.D., Hukkanen, M.V., Batten, J.J. et al. (2000). Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67 (4): 321–329.
203 203 Stanley, H.R., Clark, A.E., Pameijer, C.H., and Louw, N.P. (2001). Pulp capping with a modified bioglass formula (#A68‐modified). Am. J. Dent. 14 (4): 227–232.
204 204 Hanada, K., Morotomi, T., Washio, A. et al. (2019). In vitro and in vivo effects of a novel bioactive glass‐based cement used as a direct pulp capping agent. J. Biomed. Mater. Res. B Appl. Biomater. 107 (1): 161–168.
205 205 Esposito, M., Grusovin, M.G., Papanikolaou, N. et al. (2009). Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst. Rev. (4): CD003875.
206 206 Torabinejad, M., Parirokh, M., and Dummer, P.M.H. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview – Part II: Other clinical applications and complications. Int. Endod. J. 51 (3): 284–317.
207 207 Rutherford, B. and Fitzgerald, M. (1995). A new biological approach to vital pulp therapy. Crit. Rev. Oral Biol. Med. 6 (3): 218–229.
208 208 McKay, W.F., Peckham, S.M., and Badura, J.M. (2007). A comprehensive clinical review of recombinant human bone morphogenetic protein‐2 (INFUSE Bone Graft). Int. Orthop. 31 (6): 729–734.
209 209 Iohara, K., Nakashima, M., Ito, M. et al. (2004). Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J. Dent. Res. 83 (8): 590–595.
210 210 Kikuchi, N., Kitamura, C., Morotomi, T. et al. (2007). Formation of dentin‐like particles in dentin defects above exposed pulp by controlled release of fibroblast growth factor 2 from gelatin hydrogels. J. Endod. 33 (10): 1198–1202.
211 211 Ishimatsu, H., Kitamura, C., Morotomi, T. et al. (2009). Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor‐2 from gelatin hydrogels. J. Endod. 35 (6): 858–865.
212 212 Zhang, D., Li, Q., Rao, L. et al. (2015). Effect of 5‐Aza‐2′‐deoxycytidine on odontogenic differentiation of human dental pulp cells. J. Endod. 41 (5): 640–645.
213 213 Paino, F., La Noce, M., Tirino, V. et al. (2014). Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells 32 (1): 279–289.
214 214 Yamauchi, Y., Cooper, P.R., Shimizu, E. et al. (2020). Histone acetylation as a regenerative target in the dentine–pulp complex. Front. Genet. 11: 1.
215 215 Duncan, H.F., Smith, A.J., Fleming, G.J., and Cooper, P.R. (2012). Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp‐derived cells. J. Endod. 38 (3): 339–345.
216 216 Duncan, H.F., Smith, A.J., Fleming, G.J. et al. (2016). The histone‐deacetylase‐inhibitor suberoylanilide hydroxamic acid promotes dental pulp repair mechanisms through modulation of matrix metalloproteinase‐13 activity. J. Cell. Physiol. 231 (4): 798–816.
217 217 Jin, H., Park, J.Y., Choi, H., and Choung, P.H. (2013). HDAC inhibitor trichostatin A promotes proliferation and odontoblast differentiation of human dental pulp stem cells. Tissue Eng. Part A 19 (5–6): 613–624.
218 218 Careddu, R. and Duncan, H.F. (2018). How does the pulpal response to Biodentine and ProRoot mineral trioxide aggregate compare in the laboratory and clinic? Br. Dent. J. 225: 743–749.
219 219 ESE (2006). Quality guidelines for endodontic treatment: consensus report of the European Society of Endodontology. Int. Endod. J. 39 (12): 921–930.
220 220 Galani, M., Tewari, S., Sangwan, P. et al. (2017). Comparative evaluation of postoperative pain and success rate after pulpotomy and root canal treatment in cariously exposed mature permanent molars: a randomized controlled trial. J. Endod. 43 (12): 1953–1962.
221 221 Linsuwanont, P., Wimonsutthikul, K., Pothimoke, U., and Santiwong, B. (2017). Treatment outcomes of mineral trioxide aggregate pulpotomy in vital permanent teeth with carious pulp exposure: the retrospective study. J. Endod. 43 (2): 225–230.
222 222 Qudeimat, M.A., Alyahya, A., and Hasan, A.A. (2017). Mineral trioxide aggregate pulpotomy for permanent molars with clinical signs indicative of irreversible pulpitis: a preliminary study. Int. Endod. J. 50 (2): 126–134.
223 223 Camilleri, J. (2014). Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J. Endod. 40 (3): 436–440.
224 224 Felman, D. and Parashos, P. (2013). Coronal tooth discoloration and white mineral trioxide aggregate. J. Endod. 39 (4): 484–487.
225 225 Marciano, M.A., Costa, R.M., Camilleri, J. et al. (2014). Assessment of color stability of white mineral trioxide aggregate angelus and bismuth oxide in contact with tooth structure. J. Endod. 40 (8): 1235–1240.
226 226 Camilleri, J. (2015). Staining potential of Neo MTA Plus, MTA Plus, and Biodentine used for pulpotomy procedures. J. Endod. 41 (7): 1139–1145.
227 227 Kohli, M.R., Yamaguchi, M., Setzer, F.C., and Karabucak, B. (2015). Spectrophotometric analysis of coronal tooth discoloration induced by various bioceramic cements and other endodontic materials. J. Endod. 41 (11): 1862–1866.
228 228 Valles, M., Roig, M., Duran‐Sindreu, F. et al. (2015). Color stability of teeth restored with biodentine: a 6‐month in vitro study. J. Endod. 41 (7): 1157–1160.
229 229 Keskin, C., Demiryurek, E.O., and Ozyurek, T. (2015). Color stabilities of calcium silicate‐based materials in contact with different irrigation solutions. J. Endod. 41 (3): 409–411.
230 230 Kaup, M., Schafer, E., and Dammaschke, T. (2015). An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 11: 16.
231 231 Lucas, C.P., Viapiana, R., Bosso‐Martelo, R. et al. (2017). Physicochemical properties and dentin bond strength of a tricalcium silicate‐based retrograde material. Braz. Dent. J. 28 (1): 51–56.
232 232 Kogan, P., He, J., Glickman, G.N., and Watanabe, I. (2006). The effects of various additives on setting properties of MTA. J. Endod. 32 (6): 569–572.
233 233 Lee, J.B., Park, S.J., Kim, H.H. et al. (2014). Physical properties and biological/odontogenic effects of an experimentally developed fast‐setting alpha‐tricalcium phosphate‐based pulp capping material. BMC Oral Health 14: 87.
234 234 Butt, N., Talwar, S., Chaudhry, S. et al. (2014). Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine. Indian J. Dent. Res. 25 (6): 692–697.
235 235 Ma, J., Shen, Y., Stojicic, S., and Haapasalo, M. (2011). Biocompatibility of two novel root repair materials. J. Endod. 37 (6): 793–798.
236 236 Chin, J.S., Thomas, M.B., Locke, M., and Dummer, P.M. (2016). A survey of dental practitioners in Wales to evaluate the management of deep carious lesions with vital pulp therapy in permanent teeth. Br. Dent. J. 221 (6): 331–338.