Читать книгу Polymer Nanocomposite Materials - Группа авторов - Страница 27

References

Оглавление

1 1 Karak, N. (2019). Fundamentals of Nanomaterials and Polymer Nanocomposites. Elsevier.

2 2 Brunner, G. (2014). Supercritical Fluid Science and Technology, vol. 5 (ed. G. Brunner). Elsevier.

3 3 Pradhan, S., Lach, R., Le, H.H. et al. (2013). Effect of filler dimensionality on mechanical properties of nanofiller reinforced polyolefin elastomers. ISRN Polym. Sci. 2013: 1–9.

4 4 Jordan, J., Jacob, K.I., Tannenbaum, R. et al. (2005). Experimental trends in polymer nanocomposites-a review. Mater. Sci. Eng., A 393: 1–11.

5 5 Xiao, J. and Qi, L. (2011). Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3: 1383–1396.

6 6 Koo, J. (2015). An Overview of Nanomaterials. Cambridge University Press.

7 7 Vigneshwaran, N., Ammayappan, L., and Huang, Q. (2011). Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film. Appl. Nanosci. 1: 137–142.

8 8 Hussain, F., Hojjati, M., Okamoto, M., and Gorga, R.E. (2006). Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40: 1511–1575.

9 9 Theng, B.K.G. (1970). Interactions of clay minerals with organic polymers. some practical applications. Clays Clay Miner. 18: 357–362.

10 10 Usuki, A., Kawasumi, M., Kojima, Y. et al. (1993). Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ∈-caprolactam. J. Mater. Res. 8: 1174–1178.

11 11 Kojima, Y., Usuki, A., Kawasumi, M. et al. (2011). Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 8: 1185–1189.

12 12 Ray, S.S. and Bousmina, M. (2007). Polymer Nanocomposites and Their Applications. American Scientific Publishers.

13 13 Winey, K.I. and Vaia, R.A. (2011). Polymer nanocomposites. MRS Bull. 32: 314–322.

14 14 Verdejo, R., Bernal, M.M., Romasanta, L.J. et al. (2018). Reactive nanocomposite foams. Cell. Polym. 30: 45–62.

15 15 Nieto, A., Lahiri, D., and Agarwal, A. (2012). Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50: 4068–4077.

16 16 Schmidt, F.P., Ditlbacher, H., Hohenester, U. et al. (2012). Dark plasmonic breathing modes in silver nanodisks. Nano Lett. 12: 5780–5783.

17 17 Jung, S.-H., Oh, E., Lee, K.-H. et al. (2008). Sonochemical preparation of shape-selective ZnO nanostructures. Cryst. Growth Des. 8: 265–269.

18 18 Siril, P.F., Ramos, L., Beaunier, P. et al. (2009). Synthesis of ultrathin hexagonal palladium nanosheets. Chem. Mater. 21: 5170–5175.

19 19 Dong, X., Ji, X., Jing, J. et al. (2010). Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate. J. Phys. Chem. C 114: 2070–2074.

20 20 Nayak, B.B., Behera, D., and Mishra, B.K. (2010). Synthesis of silicon carbide dendrite by the arc plasma process and observation of nanorod bundles in the dendrite arm. J. Am. Ceram. Soc. 93: 3080–3083.

21 21 Vizireanu, S., Stoica, S.D., Luculescu, C. et al. (2010). Plasma techniques for nanostructured carbon materials synthesis. a case study: carbon nanowall growth by low pressure expanding RF plasma. Plasma Sources Sci. Technol. 19: 34016.

22 22 Mann, A.K.P. and Skrabalak, S.E. (2011). Synthesis of single-crystalline nanoplates by spray pyrolysis: a metathesis route to Bi2WO6. Chem. Mater. 23: 1017–1022.

23 23 Tiwari, J.N., Tiwari, R.N., and Kim, K.S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater Sci. 57: 724–803.

24 24 Kim, K.S., Zhao, Y., Jang, H. et al. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457: 706–710.

25 25 Bae, S., Kim, H., Lee, Y. et al. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5: 574–578.

26 26 Isitman, N.A., Dogan, M., Bayramli, E., and Kaynak, C. (2012). The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate. Polym. Degrad. Stab. 97: 1285–1296.

27 27 Shen, J., Hu, Y., Li, C. et al. (2009). Synthesis of amphiphilic graphene nanoplatelets. Small 5: 82–85.

28 28 Li, B. and Zhong, W.-H. (2011). Review on polymer/graphite nanoplatelet nanocomposites. J. Mater. Sci. 46: 5595–5614.

29 29 Umar, A. and Hahn, Y.B. (2006). ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. Nanotechnology 17: 2174–2180.

30 30 Bai, W., Zhu, X., Zhu, Z., and Chu, J. (2008). Synthesis of zinc oxide nanosheet thin films and their improved field emission and photoluminescence properties by annealing processing. Appl. Surf. Sci. 254: 6483–6488.

31 31 Mani, G.K. and Rayappan, J.B.B. (2014). A simple and template free synthesis of branched ZnO nanoarchitectures for sensor applications. RSC Adv. 4: 64075–64084.

32 32 Li, B.L., Setyawati, M.I., Chen, L. et al. (2017). Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces 9: 15286–15296.

33 33 Vengatesan, M.R. and Mittal, V. (2016). Nanoparticle- and Nanofiber-Based Polymer Nanocomposites: An Overview. Wiley-VCH.

34 34 Yang, J., Zhang, Z., Friedrich, K., and Schlarb, A.K. (2007). Creep resistant polymer nanocomposites reinforced with multiwalled carbon nanotubes. Macromol. Rapid Commun. 28: 955–961.

35 35 Fahmy, T.Y.A., Mobarak, F., Fahmy, Y. et al. (2005). Nanocomposites from natural cellulose fibers incorporated with sucrose. Wood Sci. Technol. 40: 77–86.

36 36 Garcia de Rodriguez, N.L., Thielemans, W., and Dufresne, A. (2006). Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13: 261–270.

37 37 Fahmy, T.Y.A. and Mobarak, F. (2008). Nanocomposites from natural cellulose fibers filled with kaolin in presence of sucrose. Carbohydr. Polym. 72: 751–755.

38 38 Lee, K.-Y., Bharadia, P., Blaker, J.J., and Bismarck, A. (2012). Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos. Part A: Appl. Sci. Manuf. 43: 2065–2074.

39 39 Ibrahim, I.D., Jamiru, T., Sadiku, E.R. et al. (2016). Impact of surface modification and nanoparticle on sisal fiber reinforced polypropylene nanocomposites. J. Nanotechnol. 2016: 1–9.

40 40 Lonjon, A., Laffont, L., Demont, P. et al. (2010). Structural and electrical properties of gold nanowires/P(VDF-TrFE) nanocomposites. J. Phys. D 43: 345401.

41 41 Xu, Y. and Hoa, S.V. (2008). Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos. Sci. Technol. 68: 854–861.

42 42 Pozegic, T.R., Anguita, J.V., Hamerton, I. et al. (2016). Multi-functional carbon fibre composites using carbon nanotubes as an alternative to polymer sizing. Sci. Rep. 6: 37334.

43 43 Ulus, H., Şahin, Ö.S., and Avcı, A. (2016). Enhancement of flexural and shear properties of carbon fiber/epoxy hybrid nanocomposites by boron nitride nano particles and carbon nano tube modification. Fibers Polym. 16: 2627–2635.

44 44 Ye, G. (2017). Preparation of poly(7-formylindole)/carbon fibers nanocomposites and their high capacitance behaviors. Int. J. Electrochem. Sci. 12: 8467–8476.

45 45 Lu, X., Chao, D., Chen, J. et al. (2006). Preparation and characterization of inorganic/organic hybrid nanocomposites based on Au nanoparticles and polypyrrole. Mater. Lett. 60: 2851–2854.

46 46 Subedi, D.P., Madhup, D.K., Sharma, A. et al. (2012). Retracted: study of the wettability of ZnO nanofilms. Int. Nano Lett. 2: 1.

47 47 Ślosarczyk, A., Barełkowski, M., Niemier, S., and Jakubowska, P. (2015). Synthesis and characterisation of silica aerogel/carbon microfibers nanocomposites dried in supercritical and ambient pressure conditions. J. Sol–Gel Sci. Technol. 76: 227–232.

48 48 Dhandapani, S., Nayak, S.K., and Mohanty, S. (2016). Compatibility effect of titanium dioxide nanofiber on reinforced biobased nanocomposites: thermal, mechanical, and morphology characterization. J. Vinyl Add. Technol. 22: 529–538.

49 49 Ma, J.-L., Chan, T.-M., and Young, B. (2016). Experimental investigation of cold-formed high strength steel tubular beams. Eng. Struct. 126: 200–209.

50 50 Saranya, M., Ramachandran, R., and Wang, F. (2016). Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J. Sci. Adv. Mater. Devices 1: 454–460.

51 51 Shehata, N., Gaballah, S., Samir, E. et al. (2016). Fluorescent nanocomposite of embedded ceria nanoparticles in crosslinked PVA electrospun nanofibers. Nanomaterials 6: 102.

52 52 Shehata, N., Samir, E., Gaballah, S. et al. (2016). Embedded ceria nanoparticles in crosslinked PVA electrospun nanofibers as optical sensors for radicals. Sensors 16: 1371.

53 53 Sunny, A.T., Vijayan, P.P., Adhikari, R. et al. (2016). Copper oxide nanoparticles in an epoxy network: microstructure, chain confinement and mechanical behaviour. Phys. Chem. Chem. Phys. 18: 19655–19667.

54 54 Alswata, A.A., Ahmad, M.B., Al-Hada, N.M. et al. (2017). Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water. Results Phys. 7: 723–731.

55 55 Fambri, L., Dabrowska, I., Ceccato, R., and Pegoretti, A. (2017). Effects of fumed silica and draw ratio on nanocomposite polypropylene fibers. Polymers 9: 41.

56 56 Wang, X. and Song, M. (2013). Toughening of polymers by graphene. Nanomater. Energy 2: 265–278.

57 57 Paszkiewicz, S., Pawelec, I., Szymczyk, A., and Rosłaniec, Z. (2015). Thermoplastic elastomers containing 2D nanofillers: montmorillonite, graphene nanoplatelets and oxidized graphene platelets. Polish J. Chem. Technol. 17: 74–81.

58 58 Wang, X., Xing, W., Feng, X. et al. (2017). MoS2/polymer nanocomposites: preparation, properties, and applications. Polym. Rev. 57: 440–466.

59 59 Ribeiro, H., Trigueiro, J.P.C., Silva, W.M. et al. (2019). Hybrid MoS2/h-BN nanofillers as synergic heat dissipation and reinforcement additives in epoxy nanocomposites. ACS Appl. Mater. Interfaces 11: 24485–24492.

60 60 Rao, K.S., Senthilnathan, J., Ting, J.M., and Yoshimura, M. (2014). Continuous production of nitrogen-functionalized graphene nanosheets for catalysis applications. Nanoscale 6: 12758–12768.

61 61 Shahjamali, M.M., Salvador, M., Bosman, M. et al. (2014). Edge-gold-coated silver nanoprisms: enhanced stability and applications in organic photovoltaics and chemical sensing. J. Phys. Chem. C 118: 12459–12468.

62 62 Wan, J., Kaplan, A.F., Zheng, J. et al. (2014). Two dimensional silicon nanowalls for lithium ion batteries. J. Mater. Chem. A 2: 6051–6057.

63 63 Bhattacharya, M. (2016). Polymer nanocomposites-a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9: 262.

64 64 Kumar, A.P., Depan, D., Singh Tomer, N., and Singh, R.P. (2009). Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives. Prog. Polym. Sci. 34: 479–515.

65 65 Shifrina, Z.B., Matveeva, V.G., and Bronstein, L.M. (2020). Role of polymer structures in catalysis by transition metal and metal oxide nanoparticle composites. Chem. Rev. 120: 1350–1396.

66 66 Sotto, A., Boromand, A., Balta, S. et al. (2011). Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J. Mater. Chem. 21: 10311–10320.

67 67 Huang, J., Zhang, K., Wang, K. et al. (2012). Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 423–424: 362–370.

68 68 María Arsuaga, J., Sotto, A., del Rosario, G. et al. (2013). Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J. Membr. Sci. 428: 131–141.

69 69 Zhao, S., Yan, W., Shi, M. et al. (2015). Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone. J. Membr. Sci. 478: 105–116.

70 70 Macyk, W., Szaciłowski, K., Stochel, G. et al. (2010). Titanium(IV) complexes as direct TiO2 photosensitizers. Coord. Chem. Rev. 254: 2687–2701.

71 71 Paz, Y. (2010). Application of TiO2 photocatalysis for air treatment: patents' overview. Appl. Catal., B 99: 448–460.

72 72 Su, W., Wang, S., Wang, X. et al. (2010). Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surf. Coat. Technol. 205: 465–469.

73 73 Olad, A. and Nosrati, R. (2013). Preparation and corrosion resistance of nanostructured PVC/ZnO–polyaniline hybrid coating. Prog. Org. Coat. 76: 113–118.

74 74 Wang, N., Fu, W., Zhang, J. et al. (2015). Corrosion performance of waterborne epoxy coatings containing polyethylenimine treated mesoporous-TiO2 nanoparticles on mild steel. Prog. Org. Coat. 89: 114–122.

75 75 Di Carlo, G., Curulli, A., Toro, R.G. et al. (2012). Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing. Langmuir 28: 5471–5479.

76 76 Matos, A.C., Marques, C.F., Pinto, R.V. et al. (2015). Novel doped calcium phosphate-PMMA bone cement composites as levofloxacin delivery systems. Int. J. Pharm. 490: 200–208.

77 77 Ajayan, P.M., Stephan, O., Colliex, C., and Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265: 1212–1214.

78 78 Mao, C., Zhu, Y., and Jiang, W. (2012). Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends. ACS Appl. Mater. Interfaces 4: 5281–5286.

79 79 Jang, J., Bae, J., and Yoon, S.-H. (2003). A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide–carbon nanotube composites. J. Mater. Chem. 13: 676–681.

80 80 Stankovich, S., Dikin, D.A., Dommett, G.H. et al. (2006). Graphene-based composite materials. Nature 442: 282–286.

81 81 Yousefi, N., Gudarzi, M.M., Zheng, Q. et al. (2013). Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Compos. Part A: Appl. Sci. Manuf. 49: 42–50.

82 82 Yousefi, N., Sun, X., Lin, X. et al. (2014). Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26: 5480–5487.

83 83 Shen, X., Wang, Z., Wu, Y. et al. (2016). Multilayer graphene enables higher efficiency in improving thermal conductivities of graphene/epoxy composites. Nano Lett. 16: 3585–3593.

84 84 Yousefi, N., Lin, X., Zheng, Q. et al. (2013). Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59: 406–417.

85 85 Paton, K.R., Varrla, E., Backes, C. et al. (2014). Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13: 624–630.

86 86 Gojny, F.H., Wichmann, M.H.G., Köpke, U. et al. (2004). Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64: 2363–2371.

87 87 Thostenson, E.T. and Chou, T.-W. (2006). Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44: 3022–3029.

88 88 Viets, C., Kaysser, S., and Schulte, K. (2014). Damage mapping of GFRP via electrical resistance measurements using nanocomposite epoxy matrix systems. Composites Part B 65: 80–88.

89 89 Souri, H., Nam, I.W., and Lee, H.K. (2015). Electrical properties and piezoresistive evaluation of polyurethane-based composites with carbon nano-materials. Compos. Sci. Technol. 121: 41–48.

90 90 Ahmadi-Moghadam, B. and Taheri, F. (2014). Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. J. Mater. Sci. 49: 6180–6190.

91 91 Chandrasekaran, S., Sato, N., Tölle, F. et al. (2014). Fracture toughness and failure mechanism of graphene based epoxy composites. Compos. Sci. Technol. 97: 90–99.

92 92 Li, Y., Zhang, H., Bilotti, E., and Peijs, T. (2016). Optimization of three-roll mill parameters for in-situ exfoliation of graphene. MRS Adv. 1: 1389–1394.

93 93 Dalir, H., Farahani, R.D., Nhim, V. et al. (2012). Preparation of highly exfoliated polyester-clay nanocomposites: process-property correlations. Langmuir 28: 791–803.

94 94 Park, J.-J. and Lee, J.-Y. (2013). Effect of nano-sized layered silicate on AC electrical treeing behavior of epoxy/layered silicate nanocomposite in needle-plate electrodes. Mater. Chem. Phys. 141: 776–780.

95 95 Kothmann, M.H., Ziadeh, M., Bakis, G. et al. (2015). Analyzing the influence of particle size and stiffness state of the nanofiller on the mechanical properties of epoxy/clay nanocomposites using a novel shear-stiff nano-mica. J. Mater. Sci. 50: 4845–4859.

96 96 Zhang, D.L. (2004). Processing of advanced materials using high-energy mechanical milling. Prog. Mater Sci. 49: 537–560.

97 97 Gupta, T.K., Singh, B.P., Mathur, R.B., and Dhakate, S.R. (2014). Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6: 842–851.

98 98 Wu, H., Zhao, W., Hu, H., and Chen, G. (2011). One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J. Mater. Chem. 21: 8626–8632.

99 99 Jiang, X. and Drzal, L.T. (2012). Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J. Appl. Polym. Sci. 124: 525–535.

100 100 Tang, L.-C., Wan, Y.-J., Yan, D. et al. (2013). The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60: 16–27.

101 101 Gu, J., Li, N., Tian, L. et al. (2015). High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Adv. 5: 36334–36339.

102 102 Castrillo, P.D., Olmos, D., Amador, D.R., and Gonzalez-Benito, J. (2007). Real dispersion of isolated fumed silica nanoparticles in highly filled PMMA prepared by high energy ball milling. J. Colloid Interface Sci. 308: 318–324.

103 103 Donnay, M., Tzavalas, S., and Logakis, E. (2015). Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. Compos. Sci. Technol. 110: 152–158.

104 104 Gu, J., Guo, Y., Yang, X. et al. (2017). Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers. Compos. Part A: Appl. Sci. Manuf. 95: 267–273.

105 105 Lin, Y. and Connell, J.W. (2012). Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4: 6908–6939.

106 106 Yao, Y., Lin, Z., Li, Z. et al. (2012). Large-scale production of two-dimensional nanosheets. J. Mater. Chem. 22: 13494–13499.

107 107 Lee, D., Lee, B., Park, K.H. et al. (2015). Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 15: 1238–1244.

108 108 Brent, J.R., Savjani, N., and O'Brien, P. (2017). Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Prog. Mater Sci. 89: 411–478.

109 109 Buzaglo, M., Bar, I.P., Varenik, M. et al. (2017). Graphite-to-graphene: total conversion. Adv. Mater. 29: 1603528.

110 110 Teng, C., Xie, D., Wang, J. et al. (2017). Ultrahigh conductive graphene raper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 27: 1700240.

111 111 Gu, J., Guo, Y., Lv, Z. et al. (2015). Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Compos. Part A: Appl. Sci. Manuf. 78: 95–101.

112 112 Gu, J., Xie, C., Li, H. et al. (2013). Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym. Compos. 35: 1087–1092.

113 113 Wu, C.L., Zhang, M.Q., Rong, M.Z., and Friedrich, K. (2002). Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 62: 1327–1340.

114 114 Fawaz, J. and Mittal, V. (2014). Synthesis of Polymer Nanocomposites: Review of Various Techniques. Wiley-VCH.

115 115 Kim, I.-H. and Jeong, Y.G. (2010). Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J. Polym. Sci., Part B: Polym. Phys. 48: 850–858.

116 116 Villmow, T., Pötschke, P., Pegel, S. et al. (2008). Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49: 3500–3509.

117 117 Zou, H., Wu, S., and Shen, J. (2008). Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 108: 3893–3957.

118 118 Venugopal, G., Veetil, J.C., Raghavan, N. et al. (2016). Nano-dynamic mechanical and thermal responses of single-walled carbon nanotubes reinforced polymer nanocomposite thinfilms. J. Alloys Compd. 688: 454–459.

119 119 Moniruzzaman, M., Du, F., Romero, N., and Winey, K.I. (2006). Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method. Polymer 47: 293–298.

120 120 Isayev, A.I., Kumar, R., and Lewis, T.M. (2009). Ultrasound assisted twin screw extrusion of polymer–nanocomposites containing carbon nanotubes. Polymer 50: 250–260.

121 121 Hanemann, T. and Szabó, D.V. (2010). Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3: 3468–3517.

122 122 Caseri, W.R. (2013). Nanocomposites of polymers and inorganic particles: preparation, structure and properties. Mater. Sci. Technol. 22: 807–817.

123 123 Xiong, M., Zhou, S., Wu, L. et al. (2004). Sol–gel derived organic–inorganic hybrid from trialkoxysilane-capped acrylic resin and titania: effects of preparation conditions on the structure and properties. Polymer 45: 8127–8138.

124 124 Cao, Z., Jiang, W., Ye, X., and Gong, X. (2008). Preparation of superparamagnetic Fe3O4/PMMA nano composites and their magnetorheological characteristics. J. Magn. Magn. Mater. 320: 1499–1502.

125 125 Vollath, D. and Szabó, D.V. (1999). Coated nanoparticles: a new way to improved nanocomposites. J. Nanopart. Res. 1: 235–242.

Polymer Nanocomposite Materials

Подняться наверх