Читать книгу Polymer Nanocomposite Materials - Группа авторов - Страница 46

References

Оглавление

1 1 Zhang, Y., Pan, T., and Yang, Z. (2020). Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J. 389: 124433.

2 2 Lim, Y.W., Jin, J., and Bae, B.S. (2020). Optically transparent multiscale composite films for flexible and wearable electronics. Adv. Mater. 32: 1907143.

3 3 Chen, J., Yu, Q., Cui, X. et al. (2019). An overview of stretchable strain sensors from conductive polymer nanocomposites. J. Mater. Chem. C 7: 11710–11730.

4 4 Shirakawa, H. (2001). The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew. Chem. Int. Ed. 40: 2574–2580.

5 5 Tang, C., Chen, N., and Hu, X. (2017). Conducting polymer nanocomposites: recent developments and future prospects. In: Conducting Polymer Hybrids, 1–44. Springer International Publishing.

6 6 Erdem, E., Karakışla, M., and Sacak, M. (2004). The chemical synthesis of conductive polyaniline doped with dicarboxylic acids. Eur. Polym. J. 40: 785–791.

7 7 Han, M.G. and Im, S.S. (2001). Dielectric spectroscopy of conductive polyaniline salt films. J. Appl. Polym. Sci. 82: 2760–2769.

8 8 Kim, B.R., Lee, H.-K., Park, S., and Kim, H.-K. (2011). Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films 519: 3492–3496.

9 9 An, K.H., Jeong, S.Y., Hwang, H.R., and Lee, Y.H. (2004). Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube–polypyrrole nanocomposites. Adv. Mater. 16: 1005–1009.

10 10 Molapo, K.M., Ndangili, P.M., Ajayi, R.F. et al. (2012). Electronics of conjugated polymers (I): polyaniline. Int. J. Electrochem. Sci.7: 11859–11875.

11 11 Chiu, H.-T., Chiang, T.-Y., Chang, C.-Y., and Kuo, M.-T. (2011). Carbon black/polypyrrole/nitrile rubber conducting composites: synergistic properties and compounding conductivity effect. E-Polymers 11: 037.

12 12 Choi, S., Han, S.I., Kim, D. et al. (2019). High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 48: 1566–1595.

13 13 Chen, J., Cui, X., Sui, K. et al. (2017). Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol. 140: 99–105.

14 14 Tung, T.T., Karunagaran, R., Tran, D.N. et al. (2016). Engineering of graphene/epoxy nanocomposites with improved distribution of graphene nanosheets for advanced piezo-resistive mechanical sensing. J. Mater. Chem. C 4: 3422–3430.

15 15 Pang, H., Xu, L., Yan, D.-X., and Li, Z.-M. (2014). Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39: 1908–1933.

16 16 Jeon, K.S., Nirmala, R., Navamathavan, R., and Kim, H.Y. (2013). Mechanical behavior of electrospun nylon66 fibers reinforced with pristine and treated multi-walled carbon nanotube fillers. Ceram. Int. 39: 8199–8206.

17 17 Chen, G.-X., Li, Y., and Shimizu, H. (2007). Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon 45: 2334–2340.

18 18 Ren, F., Zhu, G., Ren, P. et al. (2014). In situ polymerization of graphene oxide and cyanate ester–epoxy with enhanced mechanical and thermal properties. Appl. Surf. Sci. 316: 549–557.

19 19 Wang, L.T., Chen, Q., Hong, R.Y., and Kumar, M.R. (2015). Preparation of oleic acid modified multi-walled carbon nanotubes for polystyrene matrix and enhanced properties by solution blending. J. Mater. Sci. - Mater. Electron. 26: 8667–8675.

20 20 Mazinani, S., Ajji, A., and Dubois, C. (2009). Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer 50: 3329–3342.

21 21 Balogun, Y.A. and Buchanan, R.C. (2010). Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCs). Compos. Sci. Technol. 70: 892–900.

22 22 Dubson, M.A. and Garland, J.C. (1985). Measurement of the conductivity exponent in two-dimensional percolating networks: square lattice versus random-void continuum. Phys. Rev. B 32: 7621–7623.

23 23 Du, J., Zhao, L., Zeng, Y. et al. (2011). Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49: 1094–1100.

24 24 Sumfleth, J., Buschhorn, S.T., and Schulte, K. (2011). Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. J. Mater. Sci. 46: 659–669.

25 25 Kuilla, T., Bhadra, S., Yao, D. et al. (2010). Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35: 1350–1375.

26 26 Ameli, A., Kazemi, Y., Wang, S. et al. (2017). Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Compos. Part A: Appl. Sci. Manuf. 96: 28–36.

27 27 Deng, H., Zhang, R., Bilotti, E. et al. (2009). Conductive polymer tape containing highly oriented carbon nanofillers. J. Appl. Polym. Sci. 113: 742–751.

28 28 Zhao, P., Luo, Y., Yang, J. et al. (2014). Electrically conductive graphene-filled polymer composites with well organized three-dimensional microstructure. Mater. Lett. 121: 74–77.

29 29 Pang, H., Yan, D.-X., Bao, Y. et al. (2012). Super-tough conducting carbon nanotube/ultrahigh-molecular-weight polyethylene composites with segregated and double-percolated structure. J. Mater. Chem. 22: 23568–23575.

30 30 Deng, H., Lin, L., Ji, M. et al. (2014). Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 39: 627–655.

31 31 Nakayama, Y., Takeda, E., Shigeishi, T. et al. (2011). Melt-mixing by novel pitched-tip kneading disks in a co-rotating twin-screw extruder. Chem. Eng. Sci. 66: 103–110.

32 32 Deng, L., Xu, C., Ding, S. et al. (2019). Processing a supertoughened polylactide ternary blend with high heat deflection temperature by melt blending with a high screw rotation speed. Ind. Eng. Chem. Res. 58: 10618–10628.

33 33 Wu, H.-Y., Zhang, Y.-P., Jia, L.-C. et al. (2018). Injection molded segregated carbon nanotube/polypropylene composite for efficient electromagnetic interference shielding. Ind. Eng. Chem. Res. 57: 12378–12385.

34 34 Qu, Y., Dai, K., Zhao, J. et al. (2014). The strain-sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene conductive composites prepared by the vacuum-assisted hot compression. Colloid. Polym. Sci. 292: 945–951.

35 35 Strååt, M., Rigdahl, M., and Hagström, B. (2012). Conducting bicomponent fibers obtained by melt spinning of PA6 and polyolefins containing high amounts of carbonaceous fillers. J. Appl. Polym. Sci. 123: 936–943.

36 36 Devaux, E., Koncar, V., Kim, B. et al. (2016). Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications. Trans. Inst. Meas. Control 29: 355–376.

37 37 Kim, J.Y. (2009). The effect of carbon nanotube on the physical properties of poly(butylene terephthalate) nanocomposite by simple melt blending. J. Appl. Polym. Sci. 112: 2589–2600.

38 38 Shen, B., Zhai, W., Chen, C. et al. (2011). Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl. Mater. Interfaces 3: 3103–3109.

39 39 Pan, Y., Li, L., Chan, S.H., and Zhao, J. (2010). Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Composites Part A 41: 419–426.

40 40 Jiang, S., Gui, Z., Bao, C. et al. (2013). Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chem. Eng. J. 226: 326–335.

41 41 You, F., Wang, D., Cao, J. et al. (2014). In situ thermal reduction of graphene oxide in a styrene-ethylene/butylene-styrene triblock copolymer via melt blending. Polym. Int. 63: 93–99.

42 42 Maiti, S., Suin, S., Shrivastava, N.K., and Khatua, B.B. (2013). Low percolation threshold in polycarbonate/multiwalled carbon nanotubes nanocomposites through melt blending with poly(butylene terephthalate). J. Appl. Polym. Sci. 130: 543–553.

43 43 Sharma, M., Sharma, S., Abraham, J. et al. (2014). Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs. Mater. Res. Express 1: 035003.

44 44 Soroudi, A. and Skrifvars, M. (2010). Melt blending of carbon nanotubes/polyaniline/polypropylene compounds and their melt spinning to conductive fibres. Synth. Met. 160: 1143–1147.

45 45 Yu, F., Deng, H., Zhang, Q. et al. (2013). Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding. Polymer 54: 6425–6436.

46 46 Fan, Z. and Advani, S.G. (2007). Rheology of multiwall carbon nanotube suspensions. J. Rheol. 51: 585–604.

47 47 Pan, H., Zhang, Y., Hang, Y. et al. (2012). Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions. Biomacromolecules 13: 2859–2867.

48 48 Li, T., Zhao, G., and Wang, G. (2018). Effect of preparation methods on electrical and electromagnetic interference shielding properties of PMMA/MWCNT nanocomposites. Polym. Compos. 40: E1786–E1800.

49 49 Ramanujam, B.T.S. and Radhakrishnan, S. (2014). Solution-blended polyethersulfone–graphite hybrid composites. J. Thermoplast. Compos. Mater. 28: 835–848.

50 50 Gu, J., Gu, H., Zhang, Q. et al. (2018). Sandwich-structured composite fibrous membranes with tunable porous structure for waterproof, breathable, and oil–water separation applications. J. Colloid Interface Sci. 514: 386–395.

51 51 Kim, Y., Le, T.-H., Kim, S. et al. (2018). Single-walled carbon nanotube-in-binary-polymer nanofiber structures and their use as carbon precursors for electrochemical applications. J. Phys. Chem. C 122: 4189–4198.

52 52 Zhang, S., Li, D., Kang, J. et al. (2018). Electrospinning preparation of a graphene oxide nanohybrid proton-exchange membrane for fuel cells. J. Appl. Polym. Sci. 135: 46443.

53 53 Jin, L., Hu, B., Kuddannaya, S. et al. (2018). A three-dimensional carbon nanotube–nanofiber composite foam for selective adsorption of oils and organic liquids. Polym. Compos. 39: E271–E277.

54 54 Wang, K., Gu, M., Wang, J.-J. et al. (2012). Functionalized carbon nanotube/polyacrylonitrile composite nanofibers: fabrication and properties. Polym. Adv. Technol. 23: 262–271.

55 55 Dhakshnamoorthy, M., Ramakrishnan, S., Vikram, S. et al. (2014). In-situ preparation and characterization of acid functionalized single walled carbon nanotubes with polyimide nanofibers. J. Nanosci. Nanotechnol. 14: 5011–5018.

56 56 Bekyarova, E., Itkis, M.E., Cabrera, N. et al. (2005). Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 127: 5990–5995.

57 57 Kim, J.H., Kataoka, M., Jung, Y.C. et al. (2013). Mechanically tough, electrically conductive polyethylene oxide nanofiber web incorporating DNA-wrapped double-walled carbon nanotubes. ACS Appl. Mater. Interfaces 5: 4150–4154.

58 58 Hirsch, A. (2002). Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41: 1853–1859.

59 59 Li, Y., Zhou, B., Zheng, G. et al. (2018). Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C 6: 2258–2269.

60 60 Ntim, S.A., Sae-Khow, O., Witzmann, F.A., and Mitra, S. (2011). Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions. J. Colloid Interface Sci. 355: 383–388.

61 61 Khazaee, M., Ye, D., Majumder, A. et al. (2016). Non-covalent modified multi-walled carbon nanotubes: dispersion capabilities and interactions with bacteria. Biomed. Phys. Eng. Express 2: 055008.

62 62 Amirilargani, M., Tofighy, M.A., Mohammadi, T., and Sadatnia, B. (2014). Novel poly(vinyl alcohol)/multiwalled carbon nanotube nanocomposite membranes for pervaporation dehydration of isopropanol: poly(sodium-4-styrenesulfonate) as a functionalization agent. Ind. Eng. Chem. Res. 53: 12819–12829.

63 63 Lee, J.Y., Kang, T.H., Choi, J.H. et al. (2018). Improved electrical conductivity of poly(ethylene oxide) nanofibers using multi-walled carbon nanotubes. AIP Adv. 8: 035024.

64 64 Tu, X., Hight Walker, A.R., Khripin, C.Y., and Zheng, M. (2011). Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes. J. Am. Chem. Soc. 133: 12998–13001.

65 65 Kim, J.H., Kataoka, M., Fujisawa, K. et al. (2011). Unusually high dispersion of nitrogen-doped carbon nanotubes in DNA solution. J. Phys. Chem. B 115: 14295–14300.

66 66 Imai, Y., Fueki, T., Inoue, T., and Kakimoto, M.A. (1998). A new direct preparation of electroconductive polyimide/carbon black composite via polycondensation of nylon–salt-type monomer/carbon black mixture. J. Polym. Sci., Part A: Polym. Chem. 36: 1031–1034.

67 67 Li, Y., Pan, D., Chen, S. et al. (2013). In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater. Des. 47: 850–856.

68 68 Li, J., Zhang, G., Deng, L. et al. (2014). In situ polymerization of mechanically reinforced, thermally healable graphene oxide/polyurethane composites based on Diels–Alder chemistry. J. Mater. Chem. A 2: 20642–20649.

69 69 Xu, Z. and Gao, C. (2010). In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43: 6716–6723.

70 70 Zeng, H., Gao, C., Wang, Y. et al. (2006). In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47: 113–122.

71 71 Wang, X., Hu, Y., Song, L. et al. (2011). In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J. Mater. Chem. 21: 4222–4227.

72 72 Fim, F.d.C., Basso, N.R.S., Graebin, A.P. et al. (2013). Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J. Appl. Polym. Sci. 128: 2630–2637.

73 73 Zhu, J., Lim, J., Lee, C.-H. et al. (2014). Multifunctional polyimide/graphene oxide composites via in situ polymerization. J. Appl. Polym. Sci. 131: 40177.

74 74 Potts, J.R., Lee, S.H., Alam, T.M. et al. (2011). Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon 49: 2615–2623.

75 75 Lee, J.K.Y., Chen, N., Peng, S. et al. (2018). Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog. Polym. Sci. 86: 40–84.

76 76 Mamunya, E., Davidenko, V., and Lebedev, E. (1995). Percolation conductivity of polymer composites filled with dispersed conductive filler. Polym. Compos. 16: 319–324.

77 77 Zhou, J., Xu, X., Xin, Y., and Lubineau, G. (2018). Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 28: 1705591.

78 78 Wang, X., Sun, H., Yue, X. et al. (2018). A highly stretchable carbon nanotubes/thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 168: 126–132.

79 79 Li, J., Zhang, D., Yang, T. et al. (2018). Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5. J. Membr. Sci. 551: 85–92.

80 80 Yu, S., Wang, X., Xiang, H. et al. (2018). Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon 140: 1–9.

81 81 Roh, E., Hwang, B.-U., Kim, D. et al. (2015). Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9: 6252–6261.

82 82 Zheng, Y., Li, Y., Dai, K. et al. (2018). A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring. Compos. Sci. Technol. 156: 276–286.

83 83 Xu, H., Qu, M., and Schubert, D.W. (2019). Conductivity of poly(methyl methacrylate) composite films filled with ultra-high aspect ratio carbon fibers. Compos. Sci. Technol. 181: 107690.

84 84 Duan, S., Wang, Z., Zhang, L. et al. (2018). A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol. 3: 1800020.

85 85 Fan, X., Wang, N., Yan, F. et al. (2018). A transfer-printed, stretchable, and reliable strain sensor using PEDOT:PSS/Ag NW hybrid films embedded into elastomers. Adv. Mater. Technol. 3: 1800030.

86 86 Joo, Y., Byun, J., Seong, N. et al. (2015). Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7: 6208–6215.

87 87 Huang, W., Dai, K., Zhai, Y. et al. (2017). Flexible and lightweight pressure sensor based on carbon nanotube/thermoplastic polyurethane-aligned conductive foam with superior compressibility and stability. ACS Appl. Mater. Interfaces 9: 42266–42277.

88 88 Liu, H., Dong, M., Huang, W. et al. (2017). Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C 5: 73–83.

89 89 Malliaris, A. and Turner, D.T. (1971). Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. J. Appl. Phys. 42: 614–618.

90 90 Liu, H., Li, Q., Zhang, S. et al. (2018). Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6: 12121–12141.

91 91 Ma, M., Zhu, Z., Wu, B. et al. (2017). Preparation of highly conductive composites with segregated structure based on polyamide-6 and reduced graphene oxide. Mater. Lett. 190: 71–74.

92 92 Cui, J. and Zhou, S. (2018). Facile fabrication of highly conductive polystyrene/nanocarbon composites with robust interconnected network via electrostatic attraction strategy. J. Mater. Chem. C 6: 550–557.

93 93 Xie, L. and Zhu, Y. (2018). Tune the phase morphology to design conductive polymer composites: a review. Polym. Compos. 39: 2985–2996.

94 94 Tang, C., Long, G., Hu, X. et al. (2014). Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale 6: 7877–7888.

95 95 Wu, C., Huang, X., Wang, G. et al. (2013). Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process. Adv. Funct. Mater. 23: 506–513.

96 96 Pang, H., Bao, Y., Xu, L. et al. (2013). Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. J. Mater. Chem. A 1: 4177–4181.

97 97 Pang, H., Bao, Y., Yang, S.-G. et al. (2014). Preparation and properties of carbon nanotube/binary-polymer composites with a double-segregated structure. J. Appl. Polym. Sci. 131: 39789.

98 98 Luo, W., Charara, M., Saha, M.C., and Liu, Y. (2019). Fabrication and characterization of porous CNF/PDMS nanocomposites for sensing applications. Appl. Nanosci. 9: 1309–1317.

99 99 Cho, E.-C., Chang-Jian, C.-W., Hsiao, Y.-S. et al. (2016). Three-dimensional carbon nanotube based polymer composites for thermal management. Composites Part A 90: 678–686.

100 100 Zhao, S., Yan, Y., Gao, A. et al. (2018). Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10: 26723–26732.

101 101 Hu, X., Tian, M., Xu, T. et al. (2020). Multiscale disordered porous fibers for self-sensing and self-cooling integrated smart sportswear. ACS Nano 14: 559–567.

102 102 Zhang, S., Liu, H., Yang, S. et al. (2019). Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 11: 10922–10932.

103 103 Mates, J.E., Bayer, I.S., Palumbo, J.M. et al. (2015). Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics. Nat. Commun. 6: 8874.

104 104 Gao, J., Wu, L., Guo, Z. et al. (2019). A hierarchical carbon nanotube/SiO2 nanoparticle network induced superhydrophobic and conductive coating for wearable strain sensors with superior sensitivity and ultra-low detection limit. J. Mater. Chem. C 7: 4199–4209.

105 105 Ren, M., Zhou, Y., Wang, Y. et al. (2019). Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chem. Eng. J. 360: 762–777.

106 106 Shi, H., Shi, D., Yin, L. et al. (2014). Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. Nanoscale 6: 13748–13753.

107 107 Park, J.J., Hyun, W.J., Mun, S.C. et al. (2015). Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 7: 6317–6324.

108 108 Hu, L., Pasta, M., Mantia, F.L. et al. (2010). Stretchable, porous, and conductive energy textiles. Nano Lett. 10: 708–714.

109 109 Gao, J., Luo, J., Wang, L. et al. (2019). Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 364: 493–502.

110 110 Wang, L., Wang, H., Huang, X.-W. et al. (2018). Superhydrophobic and superelastic conductive rubber composite for wearable strain sensors with ultrahigh sensitivity and excellent anti-corrosion property. J. Mater. Chem. A 6: 24523–24533.

111 111 Lee, J., Shin, S., Lee, S. et al. (2018). Highly sensitive multifilament fiber strain sensors with ultrabroad sensing range for textile electronics. ACS Nano 12: 4259–4268.

112 112 Wang, L., Chen, Y., Lin, L. et al. (2019). Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chem. Eng. J. 362: 89–98.

113 113 Lin, L., Wang, L., Li, B. et al. (2020). Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 385: 123391.

114 114 Pu, J.-H., Zhao, X., Zha, X.-J. et al. (2019). Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J. Mater. Chem. A 7: 15913–15923.

115 115 Zhai, W., Xia, Q., Zhou, K. et al. (2019). Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability. Chem. Eng. J. 372: 373–382.

116 116 Gao, J., Wang, H., Huang, X. et al. (2018). A super-hydrophobic and electrically conductive nanofibrous membrane for a chemical vapor sensor. J. Mater. Chem. A 6: 10036–10047.

117 117 Flint, E.B. and Suslick, K.S. (1991). The temperature of cavitation. Science 253: 1397–1399.

118 118 Gao, J., Hu, M., and Li, R.K.Y. (2012). Ultrasonication induced adsorption of carbon nanotubes onto electrospun nanofibers with improved thermal and electrical performances. J. Mater. Chem. 22: 10867–10872.

119 119 Trung, T.Q. and Lee, N.E. (2016). Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28: 4338–4372.

120 120 Rinaldi, A., Tamburrano, A., Fortunato, M. et al. (2016). Highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets. Sensors 16: 2148.

121 121 Yang, H., Yao, X., Yuan, L. et al. (2019). Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading. Nanoscale 11: 578–586.

122 122 Cao, X., Lan, Y., Wei, Y. et al. (2015). Tunable resistivity–temperature characteristics of an electrically conductive multi-walled carbon nanotubes/epoxy composite. Mater. Lett. 159: 276–279.

123 123 Wang, W., Wang, C., Yue, X. et al. (2019). Raman spectroscopy and resistance-temperature studies of functionalized multiwalled carbon nanotubes/epoxy resin composite film. Microelectron. Eng. 214: 50–54.

124 124 Li, K., Dai, K., Xu, X. et al. (2013). Organic vapor sensing behaviors of carbon black/poly(lactic acid) conductive biopolymer composite. Colloid. Polym. Sci. 291: 2871–2878.

125 125 Li, J.R., Xu, J.R., Zhang, M.Q., and Rong, M.Z. (2003). Carbon black/polystyrene composites as candidates for gas sensing materials. Carbon 41: 2353–2360.

126 126 Wang, L., Luo, J., Chen, Y. et al. (2019). Fluorine-free superhydrophobic and conductive rubber composite with outstanding deicing performance for highly sensitive and stretchable strain sensors. ACS Appl. Mater. Interfaces 11: 17774–17783.

127 127 Boland, C.S., Khan, U., Backes, C. et al. (2014). Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 8: 8819–8830.

128 128 Zhang, L., He, J., Liao, Y. et al. (2019). A self-protective, reproducible textile sensor with high performance towards human–machine interactions. J. Mater. Chem. A 7: 26631–26640.

129 129 Gao, J., Wang, L., Guo, Z. et al. (2020). Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications. Chem. Eng. J. 381: 122778.

130 130 Li, L., Bai, Y., Li, L. et al. (2017). A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 29: 1702517.

131 131 Liu, S. and Li, L. (2017). Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl. Mater. Interfaces 9: 26429–26437.

132 132 Kim, S.H., Jung, S., Yoon, I.S. et al. (2018). Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv. Mater. 30: e1800109.

133 133 Zhang, Y.-Z., Lee, K.H., Anjum, D.H. et al. (2018). MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4: eaat0098.

134 134 Zhu, D., Handschuh-Wang, S., and Zhou, X. (2017). Recent progress in fabrication and application of polydimethylsiloxane sponges. J. Mater. Chem. A 5: 16467–16497.

135 135 Huang, Y., Fan, X., Chen, S.C., and Zhao, N. (2019). Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 29: 1808509.

136 136 Nie, B., Huang, R., Yao, T. et al. (2019). Textile-based wireless pressure sensor array for human-interactive sensing. Adv. Funct. Mater. 29: 1808786.

137 137 Li, Y., Samad, Y.A., and Liao, K. (2015). From cotton to wearable pressure sensor. J. Mater. Chem. A 3: 2181–2187.

138 138 Xue, F., Lu, Y., Qi, X.-d. et al. (2019). Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chem. Eng. J. 365: 20–29.

139 139 Dong, X., Wei, Y., Chen, S. et al. (2018). A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Compos. Sci. Technol. 155: 108–116.

140 140 Chen, Z., Hu, Y., Zhuo, H. et al. (2019). Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31: 3301–3312.

141 141 Sun, Q.J., Zhao, X.H., Zhou, Y. et al. (2019). Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29: 1808829.

142 142 Xia, K., Wang, C., Jian, M. et al. (2017). CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11: 1124–1134.

143 143 Wu, N., Chen, S., Lin, S. et al. (2018). Theoretical study and structural optimization of a flexible piezoelectret-based pressure sensor. J. Mater. Chem. A 6: 5065–5070.

144 144 Bae, G.Y., Pak, S.W., Kim, D. et al. (2016). Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 28: 5300–5306.

145 145 Liu, Y.-F., Huang, P., Li, Y.-Q. et al. (2019). A biomimetic multifunctional electronic hair sensor. J. Mater. Chem. A 7: 1889–1896.

146 146 Shi, J., Wang, L., Dai, Z. et al. (2018). Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 14: 1800819.

147 147 Jian, M., Xia, K., Wang, Q. et al. (2017). Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27: 1606066.

148 148 Pan, L., Chortos, A., Yu, G. et al. (2014). An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5: 3002.

149 149 Park, J., Lee, Y., Hong, J. et al. (2014). Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8: 4689–4697.

150 150 Li, Y., Zheng, Y., Zhan, P. et al. (2018). Vapor sensing performance as a diagnosis probe to estimate the distribution of multi-walled carbon nanotubes in poly(lactic acid)/polypropylene conductive composites. Sens. Actuators, B 255: 2809–2819.

151 151 Dai, K., Zhao, S., Zhai, W. et al. (2013). Tuning of liquid sensing performance of conductive carbon black (CB)/polypropylene (PP) composite utilizing a segregated structure. Composites Part A 55: 11–18.

152 152 Li, Y., Pionteck, J., Pötschke, P., and Voit, B. (2020). Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic acid)/polystyrene/multiwalled carbon nanotube composites. Mater. Des. 187: 108383.

153 153 Gao, J., Wang, H., Huang, X. et al. (2018). Electrically conductive polymer nanofiber composite with an ultralow percolation threshold for chemical vapour sensing. Compos. Sci. Technol. 161: 135–142.

154 154 Li, Y., Liu, H., Dai, K. et al. (2015). Tuning of vapor sensing behaviors of eco-friendly conductive polymer composites utilizing ramie fiber. Sens. Actuators, B 221: 1279–1289.

155 155 Huang, X., Li, B., Wang, L. et al. (2019). Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection. ACS Appl. Mater. Interfaces 11: 24533–24543.

156 156 Feller, J.F., Lu, J., Zhang, K. et al. (2011). Novel architecture of carbon nanotube decorated poly(methyl methacrylate) microbead vapour sensors assembled by spray layer by layer. J. Mater. Chem. 21: 4142–4149.

157 157 Zhao, S., Zhai, W., Li, N. et al. (2014). Liquid sensing properties of carbon black/polypropylene composite with a segregated conductive network. Sensor. Actuat. A: Phys 217: 13–20.

158 158 Liu, X., Guo, Y., Ma, Y. et al. (2014). Flexible, low-voltage and high-performance polymer thin-film transistors and their application in photo/thermal detectors. Adv. Mater. 26: 3631–3636.

159 159 Cui, X., Chen, J., Zhu, Y., and Jiang, W. (2018). Lightweight and conductive carbon black/chlorinated poly(propylene carbonate) foams with a remarkable negative temperature coefficient effect of resistance for temperature sensor applications. J. Mater. Chem. C 6: 9354–9362.

160 160 Li, Q., Siddaramaiah, N.H., Kim, G.-H., and Yoo, J.H.L. (2009). Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Composites Part B 40: 218–224.

161 161 Zhang, X., Zheng, X., Ren, D. et al. (2016). Unusual positive temperature coefficient effect of polyolefin/carbon fiber conductive composites. Mater. Lett. 164: 587–590.

162 162 Lu, C., Hu, X.-n., He, Y.-x. et al. (2012). Triple percolation behavior and positive temperature coefficient effect of conductive polymer composites with especial interface morphology. Polym. Bull. 68: 2071–2087.

163 163 Xi, Y., Yamanaka, A., Bin, Y., and Matsuo, M. (2007). Electrical properties of segregated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites. J. Appl. Polym. Sci. 105: 2868–2876.

164 164 Asare, E., Basir, A., Tu, W. et al. (2016). Effect of mixed fillers on positive temperature coefficient of conductive polymer composites. Nanocomposites 2: 58–64.

Polymer Nanocomposite Materials

Подняться наверх