Читать книгу Space Physics and Aeronomy, Solar Physics and Solar Wind - Группа авторов - Страница 30

REFERENCES

Оглавление

1 Abbo, L., Antonucci, E., Mikić, Z. et al. (2010, December). Characterization of the slow wind in the outer corona. Advances in Space Research 46: 1400–1408. https://doi.org/10.1016/j.asr.2010.08.008.

2 Aellig, M.R., Lazarus, A.J., and Steinberg, J.T. (2001). The solar wind helium abundance: Variation with wind speed and the solar cycle. Geophysical Research Letters 28: 2767–2770. https://doi.org/10.1029/2000GL012771.

3 Alexandrova, O. (2008, February). Solar wind vs magnetosheath turbulence and Alfvén vortices. Nonlinear Processes in Geophysics 15: 95–108.

4 Alexandrova, O., Carbone, V., Veltri, P., and Sorriso‐Valvo, L. (2008, February). Small‐scale energy cascade of the solar wind turbulence. The Astrophysical Journal 674: 1153–1157. https://doi.org/10.1086/524056.

5 Alexandrova, O., Chen, C.H.K., Sorriso‐Valvo, L. et al. (2013, October). Solar wind turbulence and the role of ion instabilities. Space Science Reviews 178: 101–139. https://doi.org/10.1007/s11214‐013‐0004‐8.

6 Alexandrova, O., Lacombe, C., Mangeney, A. et al. (2012, December). Solar wind turbulent spectrum at plasma kinetic scales. The Astrophysical Journal 760: 121. https://doi.org/10.1088/0004‐637X/760/2/121.

7 Alexandrova, O., Saur, J., Lacombe, C. et al. (2009, October). Universality of solar‐wind turbulent spectrum from MHD to electron scales. Physical Review Letters 103 (16): 165003. https://doi.org/10.1103/PhysRevLett.103.165003.

8 Antiochos, S.K., DeVore, C.R., Karpen, J.T., and Mikić, Z. (2007, December). Structure and dynamics of the sun’s open magnetic field. The Astrophysical Journal 671: 936–946. https://doi.org/10.1086/522489.

9 Antiochos, S.K., Mikić, Z., Titov, V.S. et al. (2011, April). A model for the sources of the slow solar wind. The Astrophysical Journal 731: 112. https://doi.org/10.1088/0004‐637X/731/2/112.

10 Antonucci, E., Andretta, V., Cesare, S., Ciaravella, A., Doschek, G., Fineschi, S., et al. (2017, November). METIS, the Multi Element Telescope for Imaging and Spectroscopy: an instrument proposed for the solar orbiter mission. In Society of photo‐optical instrumentation engineers (spie) conference series (Vol. 10566, p. 105660L). doi: https://doi.org/10.1117/12.2308225.

11 Antonucci, E., Dodero, M.A., and Giordano, S. (2000, November). Fast solar wind velocity in a polar coronal hole during solar minimum. Solar Physics 197: 115–134. https://doi.org/10.1023/A:1026568912809.

12 Bavassano, B., Dobrowolny, M., Fanfoni, G. et al. (1982, June). Statistical properties of MHD fluctuations associated with high‐speed streams from Helios‐2 observations. Solar Physics 78: 373–384. https://doi.org/10.1007/BF00151617.

13 Bavassano, B., Dobrowolny, M., Mariani, F., and Ness, N.F. (1982, May). Radial evolution of power spectra of interplanetary Alfvenic turbulence. Journal of Geophysical Research 87: 3617–3622.

14 Bavassano, B., Pietropaolo, E., & Bruno, R. (2004, February). Compressive fluctuations in high‐latitude solar wind. Annales Geophysicae, 22, 689–696. doi: 10 .5194/angeo‐22‐689‐2004

15 Belcher, J.W. and Davis, L. Jr. (1971). Large‐amplitude waves in the interplanetary medium, 2. Journal of Geophysical Research Atmospheres 76: 3534–3563.

16 Bemporad, A. (2017, September). Exploring the inner acceleration region of solar wind: A study based on coronagraphic UV and visible light data. The Astrophysical Journal 846: 86. https://doi.org/10.3847/1538‐4357/aa7de4.

17 Biermann, L. (1951). Kometenschweife und solare Korpuskularstrahlung. Zeitschrift für Astrophysik 29: 274.

18 Birkeland, K. (1908). The Norwegian aurora polaris expedition, 1902–1903, Vol. I, Section 1, H Aschehoug, Oslo.

19 Bø, I.M.T., Esser, R., and Lie‐Svendsen, Ø. (2013, May). Effect of Coulomb collisions on the gravitational settling of low and high first ionization potential elements. The Astrophysical Journal 769: 60. https://doi.org/10.1088/0004‐637X/769/1/60.

20 Borovsky, J.E. (2008, August). Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? Journal of Geophysical Research: Space Physics 113: A08110. https://doi.org/10.1029/2007JA012684.

21 Borovsky, J.E. (2010, September). On the variations of the solar wind magnetic field about the Parker spiral direction. Journal of Geophysical Research: Space Physics 115: A09101. https://doi.org/10.1029/2009JA015040.

22 Borovsky, J. E. (2012, June). Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU. Journal of Geophysical Research: Space Physics, 117, A06107. doi: 10.1029/2012JA017525.

23 Borovsky, J.E. (2016, June). The plasma structure of coronal hole solar wind: Origins and evolution. Journal of Geophysical Research: Space Physics 121: 5055–5087. https://doi.org/10.1002/2016JA022686.

24 Borovsky, J.E. and Denton, M.H. (2016, July). The trailing edges of high‐speed streams at 1 AU. Journal of Geophysical Research: Space Physics 121: 6107–6140. https://doi.org/10.1002/2016JA022863.

25 Bruno, R. and Bavassano, B. (1997, September). On the winding of the IMF spiral for slow and fast wind within the inner heliosphere. Geophysical Research Letters 24: 2267. https://doi.org/10.1029/ 97GL02183.

26 Bruno, R., & Carbone, V. (2013, May). The solar wind as a turbulence laboratory. Living Reviews in Solar Physics, 10, 2. doi: 10.12942/lrsp‐2013‐2.

27 Bruno, R., Carbone, V., Veltri, P. et al. (2001, October). Identifying intermittency events in the solar wind. Planetary and Space Science 49: 1201–1210. https://doi.org/10.1016/S0032‐0633(01)00061‐7.

28 Burlaga, L.F. (1988, July). Magnetic clouds and force‐free fields with constant alpha. Journal of Geophysical Research: Space Physics 93: 7217–7224. https://doi.org/10.1029/JA093iA07p07217.

29 Burlaga, L.F. and Barouch, E. (1976, January). Interplanetary stream magnetism – Kinematic effects. The Astrophysical Journal 203: 257–267. https://doi.org/10.1086/154074.

30 Burlaga, L.F., Lepping, R.P., Behannon, K.W. et al. (1982, June). Large‐scale variations of the interplanetary magnetic field – Voyager 1 and 2 observations between 1 and 5 AU. Journal of Geophysical Research: Space Physics 87: 4345–4353. https://doi.org/10.1029/JA087iA06p04345.

31 Burlaga, L.F., McDonald, F.B., and Ness, N.F. (1993, Jan). Cosmic ray modulation and the distant heliospheric magnetic field: Voyager 1 and 2 observations from 1986 to 1989. Journal of Geophysical Research: Space Physics 98 (A1): 1–12. https://doi.org/10.1029/92JA01979.

32 Burlaga, L.F. and Ness, N.F. (1993, October). Large‐scale distant heliospheric magnetic field: Voyager 1 and 2 observations from 1986 through 1989. Journal of Geophysical Research: Space Physics 98: 17451–17460. https://doi.org/10.1029/93JA01475.

33 Burlaga, L.F., Ness, N.F., and McDonald, F.B. (1995, August). Magnetic fields and cosmic rays in the distant heliosphere at solar maximum: Voyager 2 observations near 32 AU during 1990. Journal of Geophysical Research: Space Physics 100: 14763–14772. https://doi.org/10.1029/95JA01557.

34 Burlaga, L.F. and Ogilvie, K.W. (1970, November). Magnetic and thermal pressures in the solar wind. Solar Physics 15: 61–71. https://doi.org/10.1007/BF00149472.

35 Burton, M.E., Neugebauer, M., Crooker, N.U. et al. (1999, May). Identification of trailing edge solar wind stream interfaces: A comparison of Ulysses plasma and composition measurements. Journal of Geophysical Research: Space Physics 104: 9925–9932. https://doi.org/10.1029/JA104iA05p09925.

36 Cartwright, M.L. and Moldwin, M.B. (2008, September). Comparison of small‐scale flux rope magnetic properties to large‐scale magnetic clouds: Evidence for reconnection across the HCS? Journal of Geophysical Research: Space Physics 113: A09105. https://doi.org/10.1029/2008JA013389.

37 Cartwright, M.L. and Moldwin, M.B. (2010a, August). Heliospheric evolution of solar wind small‐scale magnetic flux ropes. Journal of Geophysical Research: Space Physics 115: A08102. https://doi.org/10.1029/2009JA014271.

38 Cartwright, M.L. and Moldwin, M.B. (2010b, August). Heliospheric evolution of solar wind small‐scale magnetic flux ropes. Journal of Geophysical Research: Space Physics 115: A08102. https://doi.org/10.1029/2009JA014271.

39 Cerri, S.S., Servidio, S., and Califano, F. (2017, September). Kinetic cascade in solar‐wind turbulence: 3D3V Hybrid‐kinetic simulations with electron inertia. The Astrophysical Journal 846: L18. https://doi.org/10.3847/2041‐8213/aa87b0.

40 Chalov, S.V., Fahr, H.J., and Izmodenov, V. (1997, April). Spectra of energized pick‐up ions upstream of the two‐dimensional heliospheric termination shock. II. Acceleration by Alfvenic and by large‐scale solar wind turbulences. Astronomy and Astrophysics 320: 659–671.

41 Chalov, S.V., Fahr, H.J., and Izmodenov, V.V. (2003, June). Evolution of pickup proton spectra in the inner heliosheath and their diagnostics by energetic neutral atom fluxes. Journal of Geophysical Research: Space Physics 108: 1266. https://doi.org/10.1029/2002JA009492.

42 Chandran, B.D.G. (2018, February). Parametric instability, inverse cascade and the range of solar‐wind turbulence. Journal of Plasma Physics 84 (1): 905840106. https://doi.org/10.1017/S0022377818000016.

43 Chapman, S. and Ferraro, V.C.A. (1931). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity (Journal of Geophysical Research) 36: 77. https://doi.org/10.1029/TE036i002p00077.

44 Chapman, S. and Zirin, H. (1957). Notes on the solar corona and the terrestrial ionosphere. Smithsonian Contributions to Astrophysics 2: 1.

45 Chen, C.H.K., Horbury, T.S., Schekochihin, A.A. et al. (2010, June). Anisotropy of solar wind turbulence between ion and electron scales. Physical Review Letters 104 (25): 255002. https://doi.org/10.1103/PhysRevLett.104.255002.

46 Chollet, E. E., & Giacalone, J. (2011, February). Evidence of confinement of solar‐energetic particles to interplanetary magnetic field lines. The Astrophysical Journal, 728, 64. doi: 10 .1088/0004‐637X/728/1/64.

47 Chollet, E.E., Giacalone, J., Mazur, J.E., and Al Dayeh, M. (2007, November). A new phenomenon in impulsive‐flare‐associated energetic particles. The Astrophysical Journal 669: 615–620. https://doi.org/10.1086/521670.

48 Claudepierre, S. G., Hudson, M. K., Lotko, W., Lyon, J. G., & Denton, R. E. (2010, November). Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations. Journal of Geophysical Research: Space Physics, 115, A11202. doi: https://doi.org/10.1029/2010JA015399.

49 Coburn, J.T., Smith, C.W., Vasquez, B.J. et al. (2014, May). Variable cascade dynamics and intermittency in the solar wind at 1 AU. The Astrophysical Journal 786: 52. https://doi.org/10.1088/0004‐637X/786/1/52.

50 Collier, M.R., Slavin, J.A., and Lepping, R.P. (2000, June). IMF length scales and predictability: The two length scale medium. International Journal of Geomagnetism and Aeronomy 2: 3–16. https://doi.org/10.1029/2012JA017525.

51 Cranmer, S.R., Field, G.B., and Kohl, J.L. (1999, June). Spectroscopic constraints on models of ion cyclotron resonance heating in the polar solar corona and high‐speed solar wind. The Astrophysical Journal 518: 937–947. https://doi.org/10.1086/307330.

52 Cranmer, S.R., van Ballegooijen, A.A., and Woolsey, L.N. (2013, April). Connecting the Sun’s high‐resolution magnetic carpet to the turbulent heliosphere. The Astrophysical Journal 767: 125. https://doi.org/10.1088/0004‐637X/767/2/125.

53 Crooker, N.U., Antiochos, S.K., Zhao, X., and Neugebauer, M. (2012, April). Global network of slow solar wind. Journal of Geophysical Research: Space Physics 117: A04104. https://doi.org/10.1029/2011JA017236.

54 Crooker, N.U., Burton, M.E., Siscoe, G.L. et al. (1996, November). Solar wind streamer belt structure. Journal of Geophysical Research 101: 24331–24342. https://doi.org/10.1029/96JA02412.

55 Crooker, N.U., Kahler, S.W., Larson, D.E., and Lin, R.P. (2004, March). Large‐ scale magnetic field inversions at sector boundaries. Journal of Geophysical Research: Space Physics 109: A03108. https://doi.org/10.1029/2003JA010278.

56 Crooker, N.U., McPherron, R.L., and Owens, M.J. (2014, June). Comparison of interplanetary signatures of streamers and pseudostreamers. Journal of Geophysical Research: Space Physics 119: 4157–4163. https://doi.org/10.1002/2014JA020079.

57 Crooker, N.U., Siscoe, G.L., Russell, C.T., and Smith, E.J. (1982, April). Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements. Journal of Geophysical Research: Space Physics 87: 2224–2230. https://doi.org/10.1029/JA087iA04p02224.

58 Crooker, N.U., Siscoe, G.L., Shodhan, S. et al. (1993, June). Multiple heliospheric current sheets and coronal streamer belt dynamics. Journal of Geophysical Research: Space Physics 98: 9371–9381. https://doi.org/10.1029/93JA00636.

59 D’Amicis, R. and Bruno, R. (2015, May). On the origin of highly Alfvénic slow solar wind. The Astrophysical Journal 805: 84. https://doi.org/10.1088/0004‐637X/805/1/84.

60 D’Amicis, R., Matteini, L., & Bruno, R. (2018, December). On slow solar wind with high Alfv\’enicity: From composition and microphysics to spectral properties. arXiv e‐prints.

61 Dasso, S., Nakwacki, M.S., Démoulin, P., and Mandrini, C.H. (2007, August). Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Physics 244: 115–137. https://doi.org/10.1007/s11207‐007‐9034‐2.

62 DeForest, C.E., Howard, R.A., Velli, M. et al. (2018, July). The highly structured outer solar corona. The Astrophysical Journal 862: 18. https://doi.org/10.3847/1538‐4357/aac8e3.

63 DeForest, C.E., Matthaeus, W.H., Viall, N.M., and Cranmer, S.R. (2016, September). Fading coronal structure and the onset of turbulence in the young solar wind. The Astrophysical Journal 828: 66. https://doi.org/10.3847/0004‐637X/828/2/66.

64 Denskat, K.U. and Neubauer, F.M. (1982, April). Statistical properties of low‐ frequency magnetic field fluctuations in the solar wind from 0.29 to 1.0 AU during solar minimum conditions – HELIOS 1 and HELIOS 2. Journal of Geophysical Research: Space Physics 87: 2215–2223. https://doi.org/10.1029/JA087iA04p02215.

65 Di Matteo, S., Viall, N.M., Kepko, L. et al. (2019). Helios observations of quasiperiodic density structures in the slow solar wind at 0.3, 0.4, and 0.6 AU. Journal of Geophysical Research: Space Physics 124 (2): 837–860. https://doi.org/10.1029/2018JA026182.

66 Di Matteo, S. and Villante, U. (2017, May). The identification of solar wind waves at discrete frequencies and the role of the spectral analysis techniques. Journal of Geophysical Research: Space Physics 122: 4905–4920. https://doi.org/10.1002/2017JA023936.

67 Dolei, S., Susino, R., Sasso, C. et al. (2018, May). Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible‐light observations. Astronomy & Astrophysics (A&A) 612: A84. https://doi.org/10.1051/0004‐6361/201732118.

68 Domingo, V., Fleck, B., and Poland, A.I. (1995, December). The SOHO mission: An overview. Solar Physics 162: 1–37. https://doi.org/10.1007/BF00733425.

69 Dyrud, L.P., Behnke, R., Kepko, E.L. et al. (2008, July). Ionospheric ULF oscillations driven from above Arecibo. Geophysical Research Letters 35: L14101. https://doi.org/10.1029/2008GL034073.

70 Endeve, E., Holzer, T.E., and Leer, E. (2004, March). Helmet streamers gone unstable: Two‐fluid magnetohydrodynamic models of the solar corona. The Astrophysical Journal 603: 307–321. https://doi.org/10.1086/381239.

71 Eriksson, S., Gosling, J.T., Phan, T.D. et al. (2009). Asymmetric shear flow effects on magnetic field configuration within oppositely directed solar wind reconnection exhausts. Journal of Geophysical Research: Space Physics 114 (A7) https://doi.org/10.1029/2008JA013990.

72 Fahr, H.J. and Fichtner, H. (2011, September). Pick‐up ion transport under conservation of particle invariants: How important are velocity diffusion and cooling processes? Astronomy and Astrophysics 533: A92. https://doi.org/10.1051/0004‐6361/201116880.

73 Feng, H.Q., Wu, D.J., and Chao, J.K. (2007, February). Size and energy distributions of interplanetary magnetic flux ropes. Journal of Geophysical Research: Space Physics 112: A02102. https://doi.org/10.1029/2006JA011962.

74 Feng, H.Q., Wu, D.J., Wang, J.M., and Chao, J.W. (2011, March). Magnetic reconnection exhausts at the boundaries of small interplanetary magnetic flux ropes. Astronomy & Astrophysics 527: A67. https://doi.org/10.1051/0004‐6361/201014473.

75 Fenrich, F.R. and Waters, C.L. (2008, October). Phase coherence analysis of a field line resonance and solar wind oscillation. Geophysical Research Letters 35: L20102. https://doi.org/10.1029/2008GL035430.

76 Fisk, L.A. (1996, July). Motion of the footpoints of heliospheric magnetic field lines at the Sun: Implications for recurrent energetic particle events at high heliographic latitudes. Journal of Geophysical Research: Space Physics 101: 15547–15554. https://doi.org/10.1029/96JA01005.

77 Fisk, L.A., Schwadron, N.A., and Zurbuchen, T.H. (1998, July). On the slow solar wind. Space Science Reviews 86: 51–60. https://doi.org/10.1023/A:1005015527146.

78 Forsyth, R.J., Balogh, A., and Smith, E.J. (2002, November). The underlying direction of the heliospheric magnetic field through the Ulysses first orbit. Journal of Geophysical Research: Space Physics 107: 1405. https://doi.org/10.1029/2001JA005056.

79 Gary, S.P. and Smith, C.W. (2009, December). Short‐wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfvén fluctuations. Journal of Geophysical Research: Space Physics 114: A12105. https://doi.org/10.1029/2009JA014525.

80 Geiss, J. (1998). Constraints on the FIP mechanisms from solar wind abundance data. Space Science Reviews 85: 241–252.

81 Geiss, J., Gloeckler, G., and von Steiger, R. (1995, April). Origin of the solar wind from composition data. Space Science Reviews 72: 49–60. https://doi.org/10.1007/BF00768753.

82 Giacalone, J., Jokipii, J.R., and Mazur, J.E. (2000, March). Small‐scale gradients and large‐scale diffusion of charged particles in the heliospheric magnetic field. The Astrophysical Journal Letters 532: L75–L78. https://doi.org/10.1086/312564.

83 Goldstein, H. (1983, November). On the field configuration in magnetic clouds. In Nasa conference publication (Vol. 228).

84 Goldstein, M. L., Roberts, D. A., & Matthaeus, W. H. (1995). Magnetohydrodynamic turbulence in the solar wind. Annual Review of Astronomy and Astrophysics, 33, 283–326. doi: 10.1146/annurev.aa .33.090195.001435.

85 Gosling, J.T. (2005). Magnetic disconnection from the Sun: Observations of a reconnection exhaust in the solar wind at the heliospheric current sheet. Geophysical Research Letters 32 (5) https://doi.org/10.1029/2005GL022406.

86 Gosling, J.T. (2012, November). Magnetic reconnection in the solar wind. Space Science Reviews 172: 187–200. https://doi.org/10.1007/s11214‐011‐9747‐2.

87 Gosling, J.T., Borrini, G., Asbridge, J.R. et al. (1981, July). Coronal streamers in the solar wind at 1 AU. Journal of Geophysical Research 86: 5438–5448. https://doi.org/10.1029/JA086iA07p05438.

88 Gosling, J.T., Eriksson, S., and Schwenn, R. (2006, October). Petschek‐type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios. Journal of Geophysical Research 111 (A10) https://doi.org/10.1029/2006JA011863.

89 Gosling, J.T., Hundhausen, A.J., and Bame, S.J. (1976, May). Solar wind stream evolution at large heliocentric distances – Experimental demonstration and the test of a model. Journal of Geophysical Research 81: 2111–2122. https://doi.org/10.1029/JA081i013p02111.

90 Gosling, J.T. and Phan, T.D. (2013, January). Magnetic reconnection in the solar wind at current sheets associated with extremely small field shear angles. The Astrophysical Journal 763 (2): L39. https://doi.org/10.1088/2041‐8205/763/2/L39.

91 Gosling, J.T. and Pizzo, V.J. (1999, July). Formation and evolution of corotating interaction regions and their three dimensional structure. Space Science Review 89: 21–52. https://doi.org/10.1023/A:1005291711900.

92 Gosling, J.T. and Szabo, A. (2008). Bifurcated current sheets produced by magnetic reconnection in the solar wind. Journal of Geophysical Research: Space Physics 113 (A10).

93 Gosling, J.T., Skoug, R.M., McComas, D.J., and Smith, C.W. (2005, January). Direct evidence for magnetic reconnection in the solar wind near 1 AU. Journal of Geophysical Research: Space Physics 110: A01107. https://doi.org/10.1029/2004JA010809.

94 Greco, A., Perri, S., Servidio, S. et al. (2016, June). The complex structure of magnetic field discontinuities in the turbulent solar wind. The Astrophysical Journal Letters 823: L39. https://doi.org/10.3847/2041‐8205/823/2/L39.

95 Hamilton, K., Smith, C.W., Vasquez, B.J., and Leamon, R.J. (2008, January). Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU. Journal of Geophysical Research: Space Physics 113: A01106. https://doi.org/10.1029/2007JA012559.

96 Harrison, R.A., Davis, C.J., and Davies, J.A. (2009, October). Pre‐CME onset fuses – Do the STEREO heliospheric imagers hold the clues to the CME onset process? Solar Physics 259: 277–296. https://doi.org/10.1007/s11207‐009‐9417‐7.

97 Hartinger, M.D., Welling, D., Viall, N.M. et al. (2014, October). The effect of magnetopause motion on fast mode resonance. Journal of Geophysical Research: Space Physics 119: 8212–8227. https://doi.org/10.1002/2014JA020401.

98 Hellinger, P., Matteini, L., Štverák, S., Trávníček, P. M., & Marsch, E. (2011, September). Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. Journal of Geophysical Research: Space Physics, 116, 9105. doi: 10.1029/2011JA016674.

99 Higginson, A.K., Antiochos, S.K., DeVore, C.R. et al. (2017, May). Formation of heliospheric arcs of slow solar wind. The Astrophysical Journal 840: L10. https://doi.org/10.3847/2041‐8213/aa6d72.

100 Higginson, A.K. and Lynch, B.J. (2018, May). Structured slow solar wind variability: Streamer‐blob flux ropes and torsional Alfvén waves. The Astrophysical Journal 859: 6. https://doi.org/10.3847/1538‐4357/aabc08.

101 Hollweg, J.V. (2002). Heating and acceleration of the solar wind in coronal holes: cyclotron resonances. Advances in Space Research 30: 469–469. https://doi.org/10.1016/ S0273‐1177(02)00324‐1.

102 Horbury, T. S., Forman, M., & Oughton, S. (2008, October). Anisotropic scaling of magnetohydrodynamic turbulence. Physical Review Letters, 101 (17), 175005‐+. doi: https://doi.org/10.1103/ PhysRevLett.101.175005.

103 Horbury, T. S., Matteini, L., & Stansby, D. (2018, August). Short, large‐amplitude speed enhancements in the near‐Sunfast solar wind. Monthly Notices of the Royal Astronomical Society, 478, 1980–1986. doi: 10 .1093/mnras/sty953.

104 Howes, G.G., Cowley, S.C., Dorland, W. et al. (2006, November). Astrophysical gyrokinetics: Basic equations and linear theory. The Astrophysical Journal 651: 590–614. https://doi.org/10.1086/506172.

105 Howes, G.G., Tenbarge, J.M., Dorland, W. et al. (2011, July). Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Physical Review Letters 107 (3): 035004. https://doi.org/10.1103/PhysRevLett.107.035004.

106 Hudson, P.D. (1970, November). Discontinuities in an anisotropic plasma and their identification in the solar wind. Planetary and Space Science 18: 1611–1622. https://doi.org/10.1016/0032‐0633(70) 90036‐X.

107 Hundhausen, A.J. and Gosling, J.T. (1976, March). Solar wind structure at large heliocentric distances – an interpretation of Pioneer 10 observations. Journal of Geophysical Research 81: 1436–1440. https://doi.org/10.1029/JA081i007p01436.

108 Hyder, C.L. and Lites, B.W. (1970, September). Hα Doppler brightening and Lyman‐a Doppler dimming in moving Hα Prominences. Solar Physics 14: 147–156. https://doi.org/10.1007/BF00240170.

109 Isenberg, P.A. (1987, February). Evolution of interstellar pickup ions in the solar wind. Journal of Geophysical Research 92: 1067–1073. https://doi.org/10.1029/JA092iA02p01067.

110 Isenberg, P.A., Lee, M.A., and Hollweg, J.V. (2001, April). The kinetic shell model of coronal heating and acceleration by ion cyclotron waves: 1. Outward propagating waves. Journal of Geophysical Research: Space Physics 106: 5649–5660. https://doi.org/10.1029/2000JA000099.

111 Jian, L., Russell, C.T., Luhmann, J.G., and Skoug, R.M. (2006, December). Properties of stream interactions at one AU during 1995 2004. Solar Physics 239: 337–392. https://doi.org/10.1007/s11207‐006‐0132‐3.

112 Jian, L.K., Wei, H.Y., Russell, C.T. et al. (2014, May). Electromagnetic waves near the proton cyclotron frequency: STEREO observations. The Astrophysical Journal 786: 123. https://doi.org/10.1088/0004‐637X/786/2/123.

113 Jovanović, D., Alexandrova, O., Maksimović, M., and Belic, M. (2020, June). Fluid Theory of Coherent Magnetic Vortices in High‐β Space Plasmas. The Astrophysical Journal 896 (1):8. https://doi.org/10.3847/1538‐4357/ab8a45.

114 Kahler, S. and Lin, R.P. (1994, July). The determination of interplanetary magnetic field polarities around sector boundaries using E greater than 2 keV electrons. Geophysical Research Letters 21: 1575–1578. https://doi.org/10.1029/94GL01362.

115 Kahler, S.W., Crooker, N.U., and Gosling, J.T. (1996, November). The topology of intrasector reversals of the interplanetary magnetic field. Journal of Geophysical Research 101: 24373–24382. https://doi.org/10.1029/96JA02232.

116 Kajdič, P., Alexandrova, O., Maksimovic, M. et al. (2016a, December). Suprathermal electron Strahl widths in the presence of narrow‐band whistler waves in the solar wind. The Astrophysical Journal 833: 172. https://doi.org/10.3847/1538‐4357/833/2/172.

117 Kajdič, P., Alexandrova, O., Maksimovic, M. et al. (2016b, December). Suprathermal electron strahl widths in the presence of narrow‐band whistler waves in the solar wind. The Astrophysical Journal 833: 172. https://doi.org/10.3847/1538‐4357/833/2/172.

118 Karpen, J.T., DeVore, C.R., Antiochos, S.K., and Pariat, E. (2017, January). Reconnection‐driven coronal‐hole jets with gravity and solar wind. The Astrophysical Journal 834: 62. https://doi.org/10.3847/1538‐4357/834/1/62.

119 Kasper, J.C., Stevens, M.L., Korreck, K.E. et al. (2012, February). Evolution of the relationships between helium abundance, minor ion charge state, and solar wind speed over the solar cycle. The Astrophysical Journal 745: 162. https://doi.org/10.1088/0004‐637X/745/2/162.

120 Kennel, C.F. and Engelmann, F. (1966, December). Velocity space diffusion from weak plasma turbulence in a magnetic field. Physics of Fluids 9: 2377–2388. https://doi.org/10.1063/1.1761629.

121 Kepko, L. and Spence, H.E. (2003, June). Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. Journal of Geophysical Research: Space Physics 108: 1257. https://doi.org/10.1029/2002JA009676.

122 Kepko, L., Spence, H.E., and Singer, H.J. (2002, April). ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophysical Research Letters 29: 1197. https://doi.org/10.1029/ 2001GL014405.

123 Kepko, L., Viall, N.M., Antiochos, S.K. et al. (2016, May). Implications of L1 observations for slow solar wind formation by solar reconnection. Geophysical Research Letters 43: 4089–4097. https://doi.org/10.1002/2016GL068607.

124 Kilpua, E.K.J., Luhmann, J.G., Gosling, J. et al. (2009, May). Small solar wind transients and their connection to the large‐scale coronal structure. Solar Physics 256: 327–344. https://doi.org/10.1007/s11207‐009‐9366‐1.

125 Kiyani, K.H., Chapman, S.C., Sahraoui, F. et al. (2013, January). Enhanced magnetic compressibility and isotropic scale invariance at sub‐ion Larmor scales in solar wind turbulence. The Astrophysical Journal 763: 10. https://doi.org/10.1088/0004‐637X/763/1/10.

126 Kiyani, K. H., Osman, K. T., & Chapman, S. C. (2015). Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2041), 20140155. doi: https://doi.org/10.1098/rsta.2014.01550.

127 Ko, Y.‐K., Muglach, K., Wang, Y.‐M., Young, P. R., & Lepri, S. T. (2014). Temporal evolution of solar wind ion composition and their source coronal holes during the declining phase of cycle 23. I. Low‐latitude extension of polar coronal holes. The Astrophysical Journal, 787(2), 121.

128 Kohl, J.L., Esser, R., Gardner, L.D. et al. (1995, December). The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. Solar Physics 162: 313–356. https://doi.org/10.1007/BF00733433.

129 Kohl, J.L., Noci, G., Antonucci, E. et al. (1998, July). UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona. The Astrophysical Journal 501: L127–L131. https://doi.org/10.1086/311434.

130 Kohl, J.L., Noci, G., Antonucci, E. et al. (1997, October). First results from the SOHO ultraviolet coronagraph spectrometer. Solar Physics 175: 613–644. https://doi.org/10.1023/A:1004903206467.

131 Lacombe, C., Alexandrova, O., and Matteini, L. (2017, October). Anisotropies of the magnetic field fluctuations at kinetic scales in the solar wind: cluster observations. The Astrophysical Journal 848: 45. https://doi.org/10.3847/1538‐4357/aa8c06.

132 Lacombe, C., Alexandrova, O., Matteini, L. et al. (2014, November). Whistler mode waves and the electron heat flux in the solar wind: Cluster observations. The Astrophysical Journal 796: 5. https://doi.org/10.1088/0004‐637X/796/1/5.

133 Laming, J.M. (2009, April). Non‐Wkb models of the first ionization potential effect: Implications for solar coronal heating and the coronal helium and neon abundances. The Astrophysical Journal 695: 954–969. https://doi.org/10.1088/0004‐637X/695/2/954.

134 Laming, J.M. (2015, September). The FIP and inverse FIP effects in solar and stellar coronae. Living Reviews in Solar Physics 12: 2. https://doi.org/10.1007/lrsp‐2015 ‐2.

135 Lavraud, B., Gosling, J.T., Rouillard, A.P. et al. (2009, May). Observation of a complex solar wind reconnection exhaust from spacecraft separated by over 1800 R E. Solar Physics 256: 379–392. https://doi.org/10.1007/s11207‐009‐9341‐x.

136 Lavraud, B., Ruffenach, A., Rouillard, A.P. et al. (2014, January). Geo‐effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection. Journal of Geophysical Research: Space Physics 119: 26–35. https://doi.org/10.1002/2013JA019154.

137 Lazar, M., Yoon, P.H., López, R.A., and Moya, P.S. (2018, January). Electromagnetic electron cyclotron instability in the solar wind. Journal of Geophysical Research: Space Physics 123: 6–19. https://doi.org/10.1002/2017JA024759.

138 Leamon, R.J., Smith, C.W., Ness, N.F. et al. (1998, March). Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. Journal of Geophysical Research Atmospheres 103: 4775. https://doi.org/10.1029/97JA03394.

139 Lee, M.A. (2000, May). An analytical theory of the morphology, flows, and shock compressions at corotating interaction regions in the solar wind. Journal of Geophysical Research 105: 10491–10500. https://doi.org/10.1029/1999JA000327.

140 Leubner, M.P. and Vörös, Z. (2005, January). A nonextensive entropy approach to solar wind intermittency. The Astrophysical Journal 618: 547–555. https://doi.org/10.1086/425893.

141 Lin, R.P. (1974, June). Non‐relativistic solar electrons. Space Science Reviews 16: 189–256. https://doi.org/10.1007/ BF00240886.

142 Lin, R.P. (1998, July). WIND observations of suprathermal electrons in the interplanetary medium. Space Science Reviews 86: 61–78. https://doi.org/10.1023/A:1005048428480.

143 Linker, J.A., Lionello, R., Mikić, Z. et al. (2011, April). The evolution of open magnetic flux driven by photospheric dynamics. The Astrophysical Journal 731: 110. https://doi.org/10.1088/0004‐637X/731/2/110.

144 Lion, S., Alexandrova, O., and Zaslavsky, A. (2016, June). Coherent events and spectral shape at ion kinetic scales in the fast solar wind turbulence. The Astrophysical Journal 824: 47. https://doi.org/10.3847/0004‐637X/824/1/47.

145 Lionello, R., Riley, P., Linker, J.A., and Mikić, Z. (2005, May). The effects of differential rotation on the magnetic structure of the solar corona: Magnetohydrodynamic simulations. The Astrophysical Journal 625: 463–473. https://doi.org/10.1086/429268.

146 Lionello, R., Velli, M., Downs, C. et al. (2014, April). Validating a Time‐dependent Turbulence‐driven Model of the Solar Wind. The Astrophysical Journal 784: 120. https://doi.org/10.1088/0004‐637X/784/2/120.

147 Liou, K., Takahashi, K., Newell, P.T., and Yumoto, K. (2008, August). Polar Ultraviolet Imager observations of solar wind‐driven ULF auroral pulsations. Geophysical Research Letters 35: L16101. https://doi.org/10.1029/2008GL034953.

148 Liu, Y.C.‐M., Huang, J., Wang, C. et al. (2014, November). A statistical analysis of heliospheric plasma sheets, heliospheric current sheets, and sector boundaries observed in situ by STEREO. Journal of Geophysical Research: Space Physics 119: 8721–8732. https://doi.org/10.1002/2014JA019956.

149 Lockwood, M., Owens, M., & Rouillard, A. P. (2009a, November). Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass. Journal of Geophysical Research: Space Physics, 114 (A11), A11103. doi: 10.1029/2009JA014449.

150 Lockwood, M., Owens, M., & Rouillard, A. P. (2009b, November). Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects. Journal of Geophysical Research: Space Physics, 114 (A11), A11104. doi: 10.1029/2009JA014450.

151 Lopez, R.E., Freeman, J.W., and Roelof, E.C. (1986, July). The relationship between proton temperature and momentum flux density in the solar wind. Geophysical Research Letters 13: 640–643. https://doi.org/10.1029/GL013i007p00640.

152 Maksimovic, M., Gary, S.P., and Skoug, R.M. (2000, August). Solar wind electron suprathermal strength and temperature gradients: Ulysses observations. Journal of Geophysical Research: Space Physics 105: 18337–18350. https://doi.org/10.1029/2000JA900039.

153 Maksimovic, M., Pierrard, V., and Riley, P. (1997). Ulysses electron distributions fitted with Kappa functions. Geophysical Research Letters 24: 1151–1154. https://doi.org/10.1029/97GL00992.

154 Manchester, W.B., Kozyra, J.U., Lepri, S.T., and Lavraud, B. (2014, July). Simulation of magnetic cloud erosion during propagation. Journal of Geophysical Research: Space Physics 119 (7): 5449–5464. https://doi.org/10.1002/2014JA019882.

155 Manchester, W.B., van der Holst, B., and Lavraud, B. (2014, March). Flux rope evolution in interplanetary coronal mass ejections: The 13 May 2005 event. Plasma Physics and Controlled Fusion 56 (6): 064006. https://doi.org/10.1088/0741‐3335/56/6/064006.

156 Marocchi, D., Antonucci, E., and Giordano, S. (2001, February). Oxygen abundance in coronal streamers during solar minimum. Annales Geophysicae 19: 135–145. https://doi.org/10.5194/angeo‐19‐135‐2001.

157 Marsch, E. (2012, November). Helios: Evolution of distribution functions 0.3‐1 AU. Space Science Reviews 172: 23–39. https://doi.org/10.1007/s11214‐010‐9734‐z.

158 Marsch, E., Schwenn, R., Rosenbauer, H. et al. (1982, January). Solar wind protons – Three‐dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. Journal of Geophysical Research: Space Physics 87: 52–72. https://doi.org/10.1029/JA087iA01p00052.

159 Marsch, E. and Tu, C.‐Y. (1993, December). Modeling results on spatial transport and spectral transfer of solar wind Alfvenic turbulence. Journal of Geophysical Research: Space Physics 98: 21. https://doi.org/10.1029/93JA02365.

160 Matteini, L., Alexandrova, O., Chen, C.H.K., and Lacombe, C. (2017, April). Electric and magnetic spectra from MHD to electron scales in the magnetosheath. Monthly Notices of the Royal Astronomical Society 466: 945–951. https://doi.org/10.1093/mnras/stw3163.

161 Matteini, L., Horbury, T.S., Neugebauer, M., and Goldstein, B.E. (2014). Dependence of solar wind speed on the local magnetic field orientation: Role of Alfvenic fluctuations. Geophysical Research Letters 41: 259–265. https://doi.org/10.1002/2013GL058482.

162 Matteini, L., Horbury, T.S., Pantellini, F. et al. (2015, March). Ion kinetic energy conservation and magnetic field strength constancy in multi‐fluid solar wind Alfvénic turbulence. The Astrophysical Journal 802: 11. https://doi.org/10.1088/0004‐637X/802/1/11.

163 Matteini, L., Stansby, D., Horbury, T.S., and Chen, C.H.K. (2018). On the 1/f spectrum in the solar wind and its connection with magnetic compressibility. The Astrophysical Journal Letters 869: L32.

164 Matteini, L., Hellinger, P., Landi, S. et al. (2012, November). Ion Kinetics in the solar wind: Coupling global expansion to local microphysics, Space Science Review 172 (1‐4): 373‐396. https://doi.org/10.1007/s11214‐011‐9774‐z.

165 Matthaeus, W. H., & Goldstein, M. L. (1986, July). Low‐frequency 1/f noise in the interplanetary magnetic field. Physical Review Letters, 57, 495–498. doi: 10 .1103/PhysRevLett.57.495.

166 Mazur, J.E., Mason, G.M., Dwyer, J.R. et al. (2000, March). Interplanetary magnetic field line mixing deduced from impulsive solar flare particles. The Astrophysical Journal Letters 532: L79–L82. https://doi.org/10.1086/312561.

167 McComas, D.J., Bame, S.J., Barraclough, B.L. et al. (1998). Ulysses’ return to the slow solar wind. Geophysical Research Letters 25: 1–4. https://doi.org/10.1029/97GL03444.

168 McComas, D.J., Ebert, R.W., Elliott, H.A. et al. (2008, September). Weaker solar wind from the polar coronal holes and the whole Sun. Geophysical Research Letters 35: L18103. https://doi.org/10.1029/2008GL034896.

169 McComas, D.J., Gosling, J.T., Winterhalter, D., and Smith, E.J. (1988, April). Interplanetary magnetic field draping about fast coronal mass ejecta in the outer heliosphere. Journal of Geophysical Research: Space Physics 93 (A4): 2519–2526. https://doi.org/10.1029/JA093iA04p02519.

170 McComas, D.J., Hoogeveen, G.W., Gosling, J.T. et al. (1996, December). ULYSSES observations of pressure‐balance structures in the polar solar wind. Astronomy and Astrophysics 316: 368–373.

171 Moldwin, M.B., Ford, S., Lepping, R. et al. (2000, January). Small‐scale magnetic flux ropes in the solar wind. 27: 57–60. https://doi.org/10.1029/1999GL010724.

172 Moldwin, M.B., Phillips, J.L., Gosling, J.T. et al. (1995, October). Ulysses observation of a noncoronal mass ejection flux rope: Evidence of interplanetary magnetic reconnection. Journal of Geophysical Research: Space Physics 100: 19903–19910. https://doi.org/10.1029/95JA01123.

173 Morton, R. J., Tomczyk, S., & Pinto, R. (2015, July). Investigating Alfvenic wave propagation in coronal open‐field regions. Nature Communications, 6. Retrieved 2015‐07‐27, from http://www.nature.com/ncomms/2015/150727/ncomms8813/full/ncomms8813.html doi: https://doi.org/10.1038/ncomms8813.

174 Morton, R. J., Tomczyk, S., & Pinto, R. F. (2016, September). A global view of velocity fluctuations in the corona below 1.3 R with CoMP. The Astrophysical Journal, 828, 89. Retrieved 2016‐09‐12, from http://adsabs.harvard.edu/abs/2016ApJ…828…89M doi: https://doi.org/10.3847/0004‐637X/828/2/89.

175 Möstl, C., Miklenic, C., Farrugia, C. J., Temmer, M., Veronig, A., Galvin, A. B., et al. (2008, October). Two‐spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Annales Geophysicae, 26(10), 3139–3152. doi: https://doi.org/10.5194/angeo‐26‐3139‐2008.

176 Neugebauer, M. (2012, May). Evidence for polar X‐ray jets as sources of microstream peaks in the solar wind. The Astrophysical Journal 750: 50. https://doi.org/10.1088/0004‐637X/750/1/50.

177 Neugebauer, M., Clay, D.R., Goldstein, B.E. et al. (1984, July). A reexamination of rotational and tangential discontinuities in the solar wind. Journal of Geophysical Research: Space Physics 89: 5395–5408. https://doi.org/10.1029/JA089iA07p05395.

178 Neugebauer, M. and Giacalone, J. (2015, October). Energetic particles, tangential discontinuities, and solar flux tubes. Journal of Geophysical Research: Space Physics 120: 8281–8287. https://doi.org/10.1002/2015JA021632.

179 Neugebauer, M., Goldstein, B.E., McComas, D.J. et al. (1995, December). Ulysses observations of microstreams in the solar wind from coronal holes. Journal of Geophysical Research: Space Physics 100: 23389–23396. https://doi.org/10.1029/95JA02723.

180 Neugebauer, M., Ruzmaikin, A., & McComas, D. J. (1997, January). Wavelet analysis of the structure of microstreams in the polar solar wind. In S. R. Habbal (Ed.), Robotic exploration close to the sun: Scientific basis (Vol. 385, p. 41–46). doi: https://doi.org/10.1063/1.51765.

181 Neugebauer, M. and Snyder, C.W. (1962, December). Solar plasma experiment. Science 138: 1095–1097. https://doi.org/10.1126/science.138.3545.1095‐a.

182 Nicol, R.M., Chapman, S.C., and Dendy, R.O. (2009, October). Quantifying the anisotropy and solar cycle dependence of “1/f” solar wind fluctuations observed by advanced composition explorer. The Astrophysical Journal 703: 2138–2151. https://doi.org/10.1088/0004‐637X/703/2/2138.

183 Noci, G., Kohl, J.L., and Withbroe, G.L. (1987, April). Solar wind diagnostics from Doppler‐enhanced scattering. The Astrophysical Journal 315: 706–715. https://doi.org/10.1086/165172.

184 Ogilvie, K.W., Fitzenreiter, R., and Desch, M. (2000, December). Electrons in the low‐density solar wind. Journal of Geophysical Research: Space Physics 105: 27277–27288. https://doi.org/10.1029/2000JA000131.

185 Oran, R., van der Holst, B., Landi, E. et al. (2013, December). A global wave‐driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies. The Astrophysical Journal 778: 176. https://doi.org/10.1088/0004‐637X/778/2/176.

186 Owens, M.J. and Forsyth, R.J. (2013). The heliospheric magnetic field. Living Reviews in Solar Physics 10.

187 Owens, M.J., Crooker, N.U., and Lockwood, M. (2013, May). Solar origin of heliospheric magnetic field inversions: Evidence for coronal loop opening within pseudostreamers. Journal of Geophysical Research: Space Physics 118: 1868–1879. https://doi.org/10.1002/jgra.50259.

188 Owens, M. J., Wicks, R. T., & Horbury, T. S. (2011, April). Magnetic discontinuities in the near‐earth solar wind: Evidence of in‐transit turbulence or remnants of coronal structure?, 269, 411‐420. doi: https://doi.org/10.1007/s11207‐010‐9695‐0.

189 Parker, E.N. (1958, November). Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal 128: 664. https://doi.org/10.1086/146579.

190 Perri, S., Goldstein, M.L., Dorelli, J.C., and Sahraoui, F. (2012, November). Detection of small‐scale structures in the dissipation regime of solar‐wind turbulence. Physical Review Letters 109 (19): 191101. https://doi.org/10.1103/ PhysRevLett.109.191101.

191 Perrone, D., Alexandrova, O., Mangeney, A. et al. (2016, August). Compressive coherent structures at ion scales in the slow solar wind. The Astrophysical Journal 826: 196. https://doi.org/10.3847/0004‐637X/826/2/196.

192 Perrone, D., Alexandrova, O., Roberts, O.W. et al. (2017, November). Coherent structures at ion scales in fast solar wind: Cluster observations. The Astrophysical Journal 849: 49. https://doi.org/10.3847/1538‐4357/aa9022.

193 Phan, T.D., Gosling, J.T., Davis, M.S. et al. (2006, January). A magnetic reconnection X‐line extending more than 390 Earth radii in the solar wind. Nature 439 (7073): 175–178. https://doi.org/10.1038/nature04393.

194 Pierrard, V. (2011, February). Solar wind electron transport: Interplanetary electric field and heat conduction. 172: 315–324. https://doi.org/10.1007/s11214‐011‐9743‐6.

195 Pierrard, V., & Lamy, H. (2003, September). The effects of the velocity filtration mechanism on the minor ions of the corona. Solar Physics, 216, 47–58. doi: 10.1023/ A:1026157306754.

196 Pierrard, V. and Lazar, M. (2010, November). Kappa distributions: Theory and applications in space plasmas. Solar Physics 267: 153–174. https://doi.org/10.1007/s11207‐010‐9640‐2.

197 Pierrard, V., Lazar, M., Poedts, S. et al. (2016, August). The electron temperature and anisotropy in the solar wind. comparison of the core and halo populations. Solar Physics 291: 2165–2179. https://doi.org/10.1007/s11207‐016‐0961‐7.

198 Pierrard, V., Lazar, M., and Schlickeiser, R. (2011, April). Evolution of the electron distribution function in the whistler wave turbulence of the solar wind. Solar Physics 269: 421–438. https://doi.org/10.1007/s11207‐010‐9700‐7.

199 Pierrard, V., Maksimovic, M., and Lemaire, J. (1999, August). Electron velocity distribution functions from the solar wind to the corona. Journal of Geophysical Research: Space Physics 104: 17021–17032. https://doi.org/10.1029/1999JA900169.

200 Pierrard, V. and Pieters, M. (2014, December). Coronal heating and solar wind acceleration for electrons, protons, and minor ions obtained from kinetic models based on kappa distributions. Journal of Geophysical Research: Space Physics 119: 9441–9455. https://doi.org/10.1002/2014JA020678.

201 Pilipp, W.G., Miggenrieder, H., Montgomery, M.D. et al. (1987, February). Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. Journal of Geophysical Research: Space Physics 92: 1075–1092. https://doi.org/10.1029/JA092iA02p01075.

202 Pilipp, W.G., Muehlhaeuser, K.‐H., Miggenrieder, H. et al. (1990, May). Large‐scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU. Journal of Geophysical Research: Space Physics 95: 6305–6329. https://doi.org/10.1029/JA095iA05p06305.

203 Pinto, R.F., Brun, A.S., Jouve, L., and Grappin, R. (2011, August). Coupling the solar dynamo and the corona: Wind properties, mass, and momentum losses during an activity cycle. The Astrophysical Journal 737: 72. https://doi.org/10.1088/0004‐637X/737/2/72.

204 Pinto, R. F., Brun, A. S., & Rouillard, A. P. (2016, August). Flux‐tube geometry and solar wind speed during an activity cycle. Astronomy & Astrophysics, 592, A65. Retrieved 2019‐03‐04, from https://www.aanda.org/articles/ aa/abs/2016/08/aa28599‐16/aa28599‐16.html doi: https://doi.org/10.1051/0004‐6361/ 201628599.

205 Pinto, R.F. and Rouillard, A.P. (2017, April). A multiple flux‐tube solar wind model. The Astrophysical Journal 838: 89. https://doi.org/10.3847/1538‐4357/aa6398.

206 Pizzo, V.J. (1982, June). A three‐dimensional model of corotating streams in the solar wind. III ‐ Magnetohydrodynamic streams. Journal of Geophysical Research: Space Physics 87: 4374–4394. https://doi.org/10.1029/ JA087iA06p04374.

207 Podesta, J. J., Roberts, D. A., & Goldstein, M. L. (2006, October). Power spectrum of small‐scale turbulent velocity fluctuations in the solar wind. Journal of Geophysical Research: Space Physics, 111 (A10), 10109‐+. doi: 10.1029/2006JA011834.

208 Poletto, G. (2015, December). Solar coronal plumes. Living Reviews in Solar Physics 12: 7. https://doi.org/10.1007/lrsp‐2015‐7.

209 Pylaev, O.S., Zaqarashvili, T.V., Brazhenko, A.I. et al. (2017, May). Oscillation of solar radio emission at coronal acoustic cut‐off frequency. Astronomy and Astrophysics 601: A42. https://doi.org/10.1051/0004‐6361/201629218.

210 Rakowski, C.E. and Laming, J.M. (2012). On the origin of the slow speed solar wind: helium abundance variations. The Astrophysical Journal 754 (1): 65.

211 Raouafi, N.E., Patsourakos, S., Pariat, E. et al. (2016, November). Solar coronal jets: Observations, theory, and modeling. Space Science Reviews 201: 1–53. https://doi.org/10.1007/s11214‐016‐0260‐5.

212 Reisenfeld, D.B., McComas, D.J., and Steinberg, J.T. (1999). Evidence of a solar origin for pressure balance structures in the high‐latitude solar wind. Geophysical Research Letters 26: 1805–1808. https://doi.org/10.1029/1999GL900368.

213 Riley, P., Linker, J., Lionello, R. et al. (2004, October). Fitting flux ropes to a global MHD solution: A comparison of techniques. Journal of Atmospheric and Solar‐Terrestrial Physics 66 (15–16): 1321–1331. https://doi.org/10.1016/j.jastp.2004.03.019.

214 Roberts, M.A., Uritsky, V.M., DeVore, C.R., and Karpen, J.T. (2018, October). Simulated encounters of the parker solar probe with a coronal‐hole jet. The Astrophysical Journal 866: 14. https://doi.org/10.3847/1538‐4357/aadb41.

215 Roberts, O.W., Alexandrova, O., Kajdič, P. et al. (2017, December). Variability of the magnetic field power spectrum in the solar wind at electron scales. The Astrophysical Journal 850: 120. https://doi.org/10.3847/1538‐4357/aa93e5.

216 Rouillard, A. P., Davies, J. A., Lavraud, B., Forsyth, R. J., Savani, N. P., Bewsher, D., et al. (2010, April). Intermittent release of transients in the slow solar wind: 1. Remote sensing observations. Journal of Geophysical Research: Space Physics, 115, A04103. doi: 10.1029/2009JA014471.

217 Rouillard, A. P., Lavraud, B., Davies, J. A., Savani, N. P., Burlaga, L. F., Forsyth, R. J., et al. (2010, April). Intermittent release of transients in the slow solar wind: 2. In situ evidence. Journal of Geophysical Research: Space Physics, 115, A04104. doi: 10.1029/2009JA014472.

218 Rouillard, A. P., Savani, N. P., Davies, J. A., Lavraud, B., Forsyth, R. J., Morley, S. K., et al. (2009, May 01). A multispacecraft analysis of a small‐scale transient entrained by solar wind streams. Solar Physics, 256(1), 307–326. Retrieved from https://doi.org/10.1007/s11207‐009‐9329‐6 doi: 10.1007/s11207‐009‐9329‐6.

219 Rouillard, A.P., Sheeley, N.R. Jr., Cooper, T.J. et al. (2011, June). The solar origin of small interplanetary transients. The Astrophysical Journal 734: 7. https://doi.org/10.1088/0004‐637X/734/1/7.

220 Ruffenach, A., Lavraud, B., Farrugia, C.J. et al. (2015, January). Statistical study of magnetic cloud erosion by magnetic reconnection. Journal of Geophysical Research: Space Physics 120: 43–60. https://doi.org/10.1002/2014JA020628.

221 Ruffenach, A., Lavraud, B., Owens, M. J., Sauvaud, J.‐A., Savani, N. P., Rouillard, A. P., et al. (2012, September). Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation: Magnetic Cloud Erosion. Journal of Geophysical Research: Space Physics, 117(A09101), 1‐16. doi: 10.1029/2012JA017624.

222 Sahraoui, F., Huang, S.Y., Belmont, G. et al. (2013, November). Scaling of the electron dissipation range of solar wind turbulence. The Astrophysical Journal 777: 15. https://doi.org/10.1088/0004‐637X/777/1/15.

223 Salem, C., Hubert, D., Lacombe, C. et al. (2003, March). Electron properties and Coulomb collisions in the solar wind at 1 AU: Wind observations. The Astrophysical Journal 585: 1147–1157. https://doi.org/10.1086/346185.

224 Salem, C., Mangeney, A., Bale, S.D., and Veltri, P. (2009, September). Solar wind magnetohydrodynamics turbulence: Anomalous scaling and role of intermittency. The Astrophysical Journal 702: 537–553. https://doi.org/10.1088/0004‐637X/702/1/537.

225 Salem, C.S., Howes, G.G., Sundkvist, D. et al. (2012, January). Identification of kinetic Alfven wave turbulence in the solar wind. The Astrophysical Journal Letters 745: L9. https://doi.org/10.1088/2041‐8205/745/1/ L9.

226 Sanchez‐Diaz, E., Rouillard, A.P., Davies, J.A. et al. (2017, January). Observational evidence for the associated formation of blobs and raining inflows in the solar corona. The Astrophysical Journal Letters 835: L7. https://doi.org/10.3847/2041‐8213/835/1/L7.

227 Sanchez‐Diaz, E., Rouillard, A.P., Lavraud, B. et al. (2016, April). The very slow solar wind: Properties, origin and variability. Journal of Geophysical Research: Space Physics 121: 2830–2841. https://doi.org/10.1002/2016JA022433.

228 Saur, J. and Bieber, J.W. (1999, May). Geometry of low‐frequency solar wind magnetic turbulence: Evidence for radially aligned Alfénic fluctuations. Journal of Geophysical Research 104: 9975–9988. https://doi.org/10.1029/1998JA900077.

229 Schekochihin, A.A., Cowley, S.C., Dorland, W. et al. (2009, May). Astrophysical Gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. The Astrophysical Journal 182: 310–377. https://doi.org/10.1088/0067‐0049/182/1/310.

230 Schreiner, A. and Saur, J. (2017, February). A model for dissipation of solar wind magnetic turbulence by kinetic Alfven waves at electron scales: Comparison with observations. The Astrophysical Journal 835: 133. https://doi.org/10.3847/1538‐4357/835/2/133.

231 Schrijver, C.J., Sandman, A.W., Aschwanden, M.J., and De Rosa, M.L. (2004, November). The coronal heating mechanism as identified by full‐sun visualizations. The Astrophysical Journal 615: 512–525. https://doi.org/10.1086/424028.

232 Schwadron, N.A., Fisk, L.A., and Zurbuchen, T.H. (1999, August). Elemental fractionation in the slow solar wind. The Astrophysical Journal 521: 859–867. https://doi.org/10.1086/307575.

233 Schwenn, R. (1990). Large‐scale structure of the interplanetary medium. Physics of the Inner Heliosphere I: 99–181.

234 Sheeley, N.R. and Rouillard, A.P. (2010, May). Tracking streamer blobs into the heliosphere. The Astrophysical Journal 715: 300–309. https://doi.org/10.1088/0004 ‐637X/715/1/300.

235 Sheeley, N.R., Wang, Y.‐M., Hawley, S.H. et al. (1997, July). Measurements of flow speeds in the corona between 2 and 30 R. The Astrophysical Journal 484: 472–478. https://doi.org/10.1086/304338.

236 Sheeley, N.R., Warren, H.P., and Wang, Y.‐M. (2007, December). A streamer ejection with reconnection close to the Sun. The Astrophysical Journal 671: 926–935. https://doi.org/10.1086/522940.

237 Smith, C.W., Hamilton, K., Vasquez, B.J., and Leamon, R.J. (2006, July). Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. The Astrophysical Journal Letters 645: L85–L88. https://doi.org/10.1086/506151.

238 Smith, E.J. and Wolfe, J.H. (1976, March). Observations of interaction regions and corotating shocks between one and five AU – Pioneers 10 and 11. Geophysical Research Letters 3: 137–140. https://doi.org/10.1029/GL003i003p00137.

239 Sorriso‐Valvo, L., Marino, R., Carbone, V. et al. (2007, September). Observation of inertial energy cascade in interplanetary space plasma. Physical Review Letters 99 (11): 115001. https://doi.org/10.1103/PhysRevLett.99.115001.

240 Stansby, D. and Horbury, T.S. (2018, June). Number density structures in the inner heliosphere. Astronomy & Astrophysics (A&A) 613: A62. https://doi.org/10.1051/0004‐6361/201732567.

241 Stansby, D., Horbury, T.S., Chen, C.H.K., and Matteini, L. (2016, September). Experimental determination of whistler wave dispersion relation in the solar wind. The Astrophysical Journal Letters 829: L16. https://doi.org/10.3847/2041‐8205/829/1/L16.

242 Stansby, D., Horbury, T.S., and Matteini, L. (2019, January). Diagnosing solar wind origins using in situ measurements in the inner heliosphere. Monthly Notices of the Royal Astronomical Society 482: 1706–1714. https://doi.org/10.1093/mnras/sty2814.

243 Stephenson, J.A.E. and Walker, A.D.M. (2002, May). HF radar observations of Pc5 ULF pulsations driven by the solar wind. Geophysical Research Letters 29: 1297. https://doi.org/10.1029/2001GL014291.

244 Strachan, L., Kohl, J.L., Weiser, H. et al. (1993, July). A Doppler dimming determination of coronal outflow velocity. The Astrophysical Journal 412: 410–420. https://doi.org/10.1086/172930.

245 Strachan, L., Panasyuk, A.V., Dobrzycka, D. et al. (2000, February). Latitudinal dependence of outflow velocities from O VI Doppler dimming observations during the Whole Sun Month. Journal of Geophysical Research: Space Physics 105: 2345–2356. https://doi.org/10.1029/1999JA900459.

246 Štverák, S., Travnicek, P., Maksimovic, M. et al. (2008, March). Electron temperature anisotropy constraints in the solar wind. Journal of Geophysical Research: Space Physics 113: A03103. https://doi.org/10.1029/2007JA012733.

247 Susino, R., Ventura, R., Spadaro, D. et al. (2008, September). Physical parameters along the boundaries of a mid‐latitude streamer and in its adjacent regions. Astronomy & Astrophysics (A&A) 488: 303–310. https://doi.org/10.1051/0004‐6361:200809713.

248 Telloni, D., Antonucci, E., & Dodero, M. A. (2007, September). Outflow velocity of the O+5 ions in polar coronal holes out to 5 R. Astronomy & Astrophysics (A&A), 472, 299–307. doi: 10.1051/ 0004‐6361:20077083.

249 Teriaca, L., Poletto, G., Romoli, M., and Biesecker, D.A. (2003, May). The nascent solar wind: Origin and acceleration. The Astrophysical Journal 588: 566–577. https://doi.org/10.1086/368409.

250 Thieme, K.M., Marsch, E., and Schwenn, R. (1990, November). Spatial structures in high‐speed streams as signatures of fine structures in coronal holes. Annales Geophysicae 8: 713–723.

251 Thieme, K.M., Schwenn, R., and Marsch, E. (1989). Are structures in high‐speed streams signatures of coronal fine structures? Advances in Space Research 9: 127–130. https://doi.org/10.1016/0273‐1177(89)90105‐1.

252 Tian, H., Yao, S., Zong, Q. et al. (2010, September). Signatures of magnetic reconnection at boundaries of interplanetary small‐scale magnetic flux ropes. The Astrophysical Journal 720: 454–464. https://doi.org/10.1088/0004‐637X/720/1/454.

253 Titov, V.S., Forbes, T.G., Priest, E.R. et al. (2009, March). Slip‐squashing factors as a measure of three‐dimensional magnetic reconnection. The Astrophysical Journal 693: 1029–1044. https://doi.org/10.1088/0004‐637X/693/1/1029.

254 Titov, V.S., Mikić, Z., Linker, J.A. et al. (2011, April). Magnetic topology of coronal hole linkages. The Astrophysical Journal 731: 111. https://doi.org/10.1088/0004‐637X/731/2/111.

255 Tomczyk, S., Landi, E., Burkepile, J.T. et al. (2016, August). Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory. Journal of Geophysical Research: Space Physics 121: 7470–7487. https://doi.org/10.1002/2016JA022871.

256 Török, T., Aulanier, G., Schmieder, B. et al. (2009, October). Fan‐spine topology formation through two‐step reconnection driven by twisted flux emergence. The Astrophysical Journal 704: 485–495. https://doi.org/10.1088/0004‐637X/704/1/485.

257 Tu, C.‐Y., & Marsch, E. (1995, July). Comment on “Evolution of energy‐containing turbulent eddies in the solar wind” by W. H. Matthaeus, S. Oughton, D. H. Pontius, Jr., and Y. Zhou. Journal of Geophysical Research, 100, 12323–12328. doi: https://doi.org/10.1029/95JA01103.

258 Tu, C.‐Y. and Marsch, E. (1997, April). Two‐fluid model for heating of the solar corona and acceleration of the solar wind by high‐frequency Alfven waves. Solar Physics 171: 363–391. https://doi.org/10.1023/A:1004968327196.

259 Turner, A.J., Gogoberidze, G., Chapman, S.C. et al. (2011, August). Nonaxisymmetric anisotropy of solar wind turbulence. Physical Review Letters 107 (9): 095002. https://doi.org/10.1103/PhysRevLett.107.095002.

260 van der Holst, B., Sokolov, I.V., Meng, X. et al. (2014, February). Alfvén Wave Solar Model (AWSoM): coronal heating. The Astrophysical Journal 782: 81. https://doi.org/10.1088/0004‐637X/782/2/81.

261 Vasyliunas, V.M. and Siscoe, G.L. (1976, March). On the flux and the energy spectrum of interstellar ions in the solar system. Journal of Geophysical Research 81: 1247–1252. https://doi.org/10.1029/JA081i007p01247.

262 Velli, M., Grappin, R., and Mangeney, A. (1989, October). Turbulent cascade of incompressible unidirectional Alfven waves in the interplanetary medium. Physical Review Letters 63: 1807–1810. https://doi.org/10.1103/PhysRevLett.63.1807.

263 Velli, M., Lionello, R., Linker, J.A., and Mikić, Z. (2011, July). Coronal plumes in the fast solar wind. The Astrophysical Journal 736: 32. https://doi.org/10.1088/0004‐637X/736/1/32.

264 Verdini, A., Grappin, R., Pinto, R., and Velli, M. (2012, May). On the origin of the 1/f spectrum in the solar wind magnetic field. The Astrophysical Journal Letters 750: L33. https://doi.org/10.1088/2041 ‐8205/750/2/L33.

265 Viall, N.M., Kepko, L., and Spence, H.E. (2008, July). Inherent length‐scales of periodic solar wind number density structures. Journal of Geophysical Research: Space Physics 113: A07101. https://doi.org/10.1029/2007JA012881.

266 Viall, N.M., Kepko, L., and Spence, H.E. (2009, January). Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere. Journal of Geophysical Research: Space Physics 114: A01201. https://doi.org/10.1029/2008JA013334.

267 Viall, N.M., Spence, H.E., and Kasper, J. (2009, December). Are periodic solar wind number density structures formed in the solar corona? Geophysical Research Letters 36: L23102. https://doi.org/10.1029/2009GL041191.

268 Viall, N.M., Spence, H.E., Vourlidas, A., and Howard, R. (2010, November). Examining periodic solar‐wind density structures observed in the SECCHI heliospheric imagers. Solar Physics 267: 175–202. https://doi.org/10.1007/s11207‐010‐9633‐1.

269 Viall, N. M., & Vourlidas, A. (2015, July). Periodic density structures and the origin of the slow solar wind. The Astrophysical Journal, 807, 176. doi: 10 .1088/0004‐637X/807/2/176.

270 Villante, U., Del Corpo, A., and Francia, P. (2013, January). Geomagnetic and solar wind fluctuations at discrete frequencies: A case study. Journal of Geophysical Research: Space Physics 118: 218–231. https://doi.org/10.1029/2012JA017971.

271 Villante, U., Di Matteo, S., and Piersanti, M. (2016, January). On the transmission of waves at discrete frequencies from the solar wind to the magnetosphere and ground: A case study. Journal of Geophysical Research: Space Physics 121: 380–396. https://doi.org/10.1002/2015JA021628.

272 Vocks, C. (2012, November). Kinetic models for whistler wave scattering of electrons in the solar corona and wind. Space Science Reviews 172: 303–314. https://doi.org/10.1007/s11214‐011‐9749‐0.

273 Vocks, C. and Mann, G. (2003, August). Generation of suprathermal electrons by resonant wave‐particle interaction in the solar corona and wind. The Astrophysical Journal 593: 1134–1145. https://doi.org/10.1086/376682.

274 Vocks, C., Mann, G., and Rausche, G. (2008, March). Formation of suprathermal electron distributions in the quiet solar corona. Astronomy & Astrophysics (A&A) 480: 527–536. https://doi.org/10.1051/0004‐6361:20078826.

275 Vocks, C., Salem, C., Lin, R.P., and Mann, G. (2005, July). Electron Halo and Strahl formation in the solar wind by resonant interaction with whistler waves. The Astrophysical Journal 627: 540–549. https://doi.org/10.1086/430119.

276 von Rosenvinge, T.T., Richardson, I.G., Reames, D.V. et al. (2009, May). The solar energetic particle event of 14 December 2006. Solar Physics 256: 443–462. https://doi.org/10.1007/s11207‐009‐9353‐6.

277 von Steiger, R., Schwadron, N.A., Fisk, L.A. et al. (2000, December). Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer. Journal of Geophysical Research: Space Physics 105: 27217–27238. https://doi.org/10.1029/1999JA000358.

278 Wang, Y., Wei, F.S., Feng, X.S. et al. (2012, March). Variations of solar electron and proton flux in magnetic cloud boundary layers and comparisons with those across the shocks and in the reconnection exhausts. The Astrophysical Journal 749 (1): 82. https://doi.org/10.1088/0004‐637X/749/1/82.

279 Wang, Y.‐M., Ko, Y.‐K., and Grappin, R. (2009, January). Slow solar wind from open regions with strong low‐coronal heating. The Astrophysical Journal 691: 760–769. https://doi.org/10.1088/0004‐637X/691/1/760.

280 Wang, Y.M., Sheeley, J., and N. R., & Rouillard, A. P. (2006, Jun). Role of the Sun’s nonaxisymmetric open flux in cosmic‐ray modulation. The Astrophysical Journal 644 (1): 638–645. https://doi.org/10.1086/503523.

281 Wang, Y.‐M., Sheeley, N.R., Socker, D.G. et al. (1998, December). Observations of correlated white‐light and extreme‐ultraviolet jets from polar coronal holes. The Astrophysical Journal 508: 899–907. https://doi.org/10.1086/306450.

282 Wang, Y.‐M., Sheeley, N.R., Socker, D.G. et al. (2000, November). The dynamical nature of coronal streamers. Journal of Geophysical Research 105: 25133–25142. https://doi.org/10.1029/2000JA000149.

283 Wang, Y.‐M., Sheeley, N.R. Jr., Nash, A.G., and Shampine, L.R. (1988, April). The quasi‐rigid rotation of coronal magnetic fields. The Astrophysical Journal, Part 1 (327): 427–450. https://doi.org/10.1086/166205.

284 Wei, F., Liu, R., Fan, Q., and Feng, X. (2003, June). Identification of the magnetic cloud boundary layers. Journal of Geophysical Research: Space Physics 108 (A6) https://doi.org/10.1029/2002JA009511.

285 Whang, Y.C. and Burlaga, L.F. (1990, December). Simulation of period doubling of recurrent solar wind structures. Journal of Geophysical Research: Space Physics 95: 20663–20671. https://doi.org/10.1029/JA095iA12p20663.

286 Wicks, R.T., Horbury, T.S., Chen, C.H.K., and Schekochihin, A.A. (2010). Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Monthly Notices of the Royal Astronomical Society: Letters 407: L31–L35. https://doi.org/10.1111/j.1745‐3933.2010.00898.x.

287 Widing, K.G. and Feldman, U. (2001, July). On the rate of abundance modifications versus time in active region plasmas. The Astrophysical Journal 555: 426–434. https://doi.org/10.1086/ 321482.

288 Winterhalter, D., Smith, E.J., Burton, M.E. et al. (1994, April). The heliospheric plasma sheet. Journal of Geophysical Research: Space Physics 99: 6667–6680. https://doi.org/10.1029/93JA03481.

289 Withbroe, G.L., Kohl, J.L., Weiser, H., and Munro, R.H. (1982, March). Probing the solar wind acceleration region using spectroscopic techniques. Space Science Reviews 33: 17–52. https://doi.org/10.1007/BF00213247.

290 Yoon, P.H., Kim, S., and Choe, G.S. (2015, October). Steady‐state model of solar wind electrons revisited. The Astrophysical Journal 812: 169. https://doi.org/10.1088/0004‐637X/812/2/169.

291 Zangrilli, L. and Poletto, G. (2016, October). Evolution of active region outflows throughout an active region lifetime. Astronomy & Astrophysics (A&A) 594: A40. https://doi.org/10.1051/0004‐6361/ 201628421.

292 Zank, G.P. (1999, July). Interaction of the solar wind with the local interstellar medium: A theoretical perspective. Space Science Reviews 89: 413–688. https://doi.org/10.1023/A:1005155601277.

293 Zurbuchen, T.H., Hefti, S., Fisk, L.A. et al. (1999, January). The transition between fast and slow solar wind from composition data. Space Science Reviews 87: 353–356. https://doi.org/10.1023/A:1005126718714.

Space Physics and Aeronomy, Solar Physics and Solar Wind

Подняться наверх