Читать книгу Applied Soil Chemistry - Группа авторов - Страница 35

1.4 Estimates of Global Potential for Carbon Sequestration in Soils

Оглавление

There are several published estimates of the global potential for carbon sequestration in soils, summarized by Paustian et al. (2019) [45], that suggest a range for the technical potential for additional carbon uptake by soils of between 2 and 5 Pg (gigatonnes) of CO2 per year (~0.5 to 1.5 Pg C a−1). To achieve the top end of that range, the best of currently available land and carbon management practices would need to be adopted for most croplands and grass lands around the world. These practices would also need to involve a drastic reduction in soil disturbance, measures to combat soil erosion, and be accompanied by a substantial increase in reforestation.

If and when such practices are adopted, they should provide an initial boost to the soils carbon uptake from the atmosphere. However, such a boost would likely only last for some decades until the better managed cropland and grassland soils and reforested regions achieved their new and higher carbon storage equilibrium. Technology advances in producing beneficial soil supplements cheaply, for example, biochar residues from biofuel production [46], and genetically engineered perennial and annual grain crops with deeper and larger roots [47], if widely utilized in the medium term, have the potential to increase the carbon uptake by soils by a further 0.5 to 1.0 Pg C a−1. This could achieve up to about 2 Pg C a−1 of additional global soil carbon storage capacity [45].

Applied Soil Chemistry

Подняться наверх