Читать книгу Biosurfactants for a Sustainable Future - Группа авторов - Страница 90

References

Оглавление

1 1 Khan, M.S., Zaidi, A., Wani, P.A., and Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters 7 (1): 1–19.

2 2 Oliveira, S., Pessenda, L.C., Gouveia, S.E., and Favaro, D.I. (2011). Heavy metal concentrations in soils from a remote oceanic island, Fernando de Noronha, Brazil. Anais da Academia Brasileira de Ciências 83 (4): 1193–1206.

3 3 Sarma, H., Islam, N.F., Borgohain, P. et al. (2016). Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia's oldest oil and gas drilling site in Assam, northeast India: implications for the bio economy. Emerging Contaminants 2 (3): 119–127.

4 4 Sarma, H., Sonowa, S., and Prasad, M.N.V. (2019). Plant‐microbiome assisted and biochar‐amended remediation of heavy metals and polyaromatic compounds – A microcosmic study. Ecotoxicology and Environmental Safety 176: 288–299.

5 5 Tian, H.Z., Lu, L., Cheng, K. et al. (2012). Anthropogenic atmospheric nickel emissions and its distribution characteristics in China. Science of the Total Environment 417: 148–157.

6 6 Dixit, R., Malaviya, D., Pandiyan, K. et al. (2015). Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7 (2): 2189–2212.

7 7 Gaur, N., Flora, G., Yadav, M., and Tiwari, A. (2014). A review with recent advancements on bioremediation‐based abolition of heavy metals. Environmental Science: Processes and Impacts 16 (2): 180–193.

8 8 Sarma, H. and Prasad, M.N.V. (2015). Plant‐microbe association‐assisted removal of heavy metals and degradation of polycyclic aromatic hydrocarbons. In: Petroleum Geosciences: Indian Contexts, 219–236. Springer https://doi.org/10.1007/978‐3‐319‐03119‐4_10. ISBN: 978‐3‐319‐03118‐7.

9 9 Sarma, H. and Prasad, M.N.V. (2016). Chapter 24 – Phytomanagement of polycyclic aromatic hydrocarbons and heavy metals‐contaminated sites in Assam, North Eastern State of India, for boosting bioeconomy. In: Bioremediation and Bioeconomy (ed. M.N.V. Prasad), 609–626. Elsevier https://doi.org/10.1016/B978‐0‐12‐802830‐8.00024‐1.

10 10 Tak, H.I., Ahmad, F., and Babalola, O.O. (2013). Advances in the application of plant growth‐promoting rhizobacteria in phytoremediation of heavy metals. In: Reviews of Environmental Contamination and Toxicology, vol. 223, 33–52. New York, NY: Springer.

11 11 Sarma, H., Islam, N.F., and Prasad, M.N.V. (2017). Plant‐microbial association in petroleum and gas exploration sites in the state of Assam, north‐east India – Significance for bioremediation. Environmental Science and Pollution Research 24 (9): 8744–8758.

12 12 Mani, D. and Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. International Journal of Environmental Science and Technology 11 (3): 843–872.

13 13 Singh, P. and Cameotra, S.S. (2004). Enhancement of metal bioremediation by use of microbial surfactants. Biochemical and Biophysical Research Communications 319 (2): 291–297.

14 14 Sekhar, K.C., Kamala, C.T., Chary, N.S. et al. (2004). Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. Journal of Hazardous Materials 108 (1‐2): 111–117.

15 15 Sarma, H. and Prasad, M.N.V. (2018). Metabolic engineering of rhizobacteria associated with plants for remediation of toxic metals and metalloids. In: Transgenic Plant Technology (ed. M.N.V. Prasad). Elsevier. eBook ISBN: 9780128143902, Paperback ISBN: 9780128143896.

16 16 Dahrazma, B. and Mulligan, C.N. (2007). Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 69 (5): 705–711.

17 17 Mulligan, C.N., Yong, R.N., and Gibbs, B.F. (2001). Heavy metal removal from sediments by biosurfactants. Journal of Hazardous Materials 85 (1–2): 111–125.

18 18 Juwarkar, A.A., Nair, A., Dubey, K.V. et al. (2007). Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68 (10): 1996–2002.

19 19 Herman, D.C., Artiola, J.F., and Miller, R.M. (1995). Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environmental Science and Technology 29 (9): 2280–2285.

20 20 Tan, H., Champion, J.T., Artiola, J.F. et al. (1994). Complexation of cadmium by a rhamnolipid biosurfactant. Environmental Science and Technology 28 (13): 2402–2406.

21 21 Saikia, R.R., Deka, S., Deka, M., and Sarma, H. (2012). Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. Journal of Basic Microbiology 52 (4): 446–457.

22 22 Mukherjee, S., Das, P., and Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology 24 (11): 509–515.

23 23 Cameotra, S.S., Makkar, R.S., Kaur, J., and Mehta, S.K. (2010). Synthesis of biosurfactants and their advantages to microorganisms and mankind. In: Biosurfactants. Advances in Experimental Medicine and Biology, vol. 672 (ed. R. Sen), 261–280. New York, NY: Springer.

24 24 Shekhar, S., Sundaramanickam, A., and Balasubramanian, T. (2015). Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology 45 (14): 1522–1554.

25 25 Rodrigues, L.R. (2015). Microbial surfactants: fundamentals and applicability in the formulation of nano‐sized drug delivery vectors. Journal of Colloid and Interface Science 449: 304–316.

26 26 Desai, J.D. and Banat, I.M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Review 61 (1): 47–64.

27 27 Lin, S.C. (1996). Biosurfactants: Recent advances. Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology 66 (2): 109–120.

28 28 Parkinson, M. (1985). Bio‐surfactants. Biotechnology Advances 3 (1): 65–83.

29 29 Tabatabaei, M. (2015) Design and fabrication of integrated plasmonic platforms for ultra‐sensitive molecular and biomolecular detections. Doctorate Thesis.

30 30 Leuchtle, B., Xie, W., Zambanini, T. et al. (2015). Critical factors for microbial contamination of domestic heating oil. Energy & Fuels 29 (10): 6394–6403.

31 31 Miller, R.M. (1995). Biosurfactant‐facilitated remediation of metal‐contaminated soils. Environmental Health Perspectives 103: 59–62.

32 32 Rufino, R.D., Luna, J.M., Campos‐Takaki, G.M. et al. (2012). Application of the biosurfactant produced by Candida lipolytica in the remediation of heavy metals. Chemical Engineering 27: 61–66.

33 33 Willumsen, P.A. and Karlson, U. (1996). Screening of bacteria, isolated from PAH‐contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7 (5): 415–423.

34 34 Tabatabaei, A., Nouhi, A.A., Sajadian, V., and Mazaheri, A.M. (2005). Isolation of biosurfactant producing bacteria from oil reservoirs. Iranian Journal of Environmental Health Science and Engineering 2 (1): 6–12.

35 35 Burger, M.M., Glaser, L., and Burton, R.M. (1963). The enzymatic synthesis of a rhamnose‐containing glycolipid by extracts of Pseudomonas aeruginosa. Journal of Biological Chemistry 238 (8): 2595–2602.

36 36 Cooper, D.G. and Paddock, D.A. (1984). Production of a biosurfactant from Torulopsis bombicola. Applied Environmental Microbiology 47 (1): 73–176.

37 37 Ristau, E. and Wagner, F. (1983). Formation of novel anionic trehalosetetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnology Letters 5 (2): 95–100.

38 38 Cooper, D.G., Macdonald, C.R., Duff, S.J.B., and Kosaric, N. (1981). Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Applied Environmental Microbiology 42 (3): 408–412.

39 39 Kretschmer, A., Bock, H., and Wagner, F. (1982). Chemical and physical characterization of interfacial‐active lipids from Rhodococcus erythropolis grown on n‐alkanes. Applied Environmental. Microbiology 44 (4): 864–870.

40 40 Casas, J.A., de Lara, S.G., and Garcia‐Ochoa, F. (1997). Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enzyme and Microbial Technology 21 (3): 21–229.

41 41 Thanomsub, B., Watcharachaipong, T., Chotelersak, K. et al. (2004). Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. Journal of Applied Microbiology 96 (3): 588–592.

42 42 Sarubbo, L.A., Farias, C.B., and Campos‐Takaki, G.M. (2007). Co‐utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Current Microbiology 54 (1): 68–73.

43 43 Konishi, M., Fukuoka, T., Morita, T. et al. (2008). Production of new types of sophorolipids by Candida batistae. Journal of Oleo Science 57 (6): 359–369.

44 44 Alejandro, C.S., Humberto, H.S., and Maria, J.F. (2011). Production of glycolipids with antimicrobial activity by Ustilago maydis FBD12 in submerged culture. African Journal of Microbiol Research 5: 2512–2523.

45 45 Chandran, P. and Das, N. (2010). Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. International Journal of Engineering Science and Technology 2 (12): 6942–6953.

46 46 Rosenberg, E. and Ron, E.Z. (1999). High‐and low‐molecular‐mass microbial surfactants. Applied Microbiology and Biotechnology 52 (2): 154–162.

47 47 Saenz‐Marta, C.I., de Lourdes Ballinas‐Casarrubias, M., Rivera‐Chavira, B.E., and Nevarez‐o, G.V. (2015). Biosurfactants as useful tools in bioremediation. In: Advances in Bioremediation of Wastewater and Polluted Soil, 2e, 94–109. Rijeka, Crotia (InTechOpen) https://doi.org/10.5772/60751.

48 48 Van Ginkel, C.G. (1996). Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation 7 (2): 151–164.

49 49 Chen, S.Y., Wei, Y.H., and Chang, J.S. (2007). Repeated pH‐stat fed‐batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Applied Microbiology and Biotechnology 76 (1): 67–74.

50 50 Veenanadig, N.K., Gowthaman, M.K., and Karanth, N.G.K. (2000). Scale up studies for the production of biosurfactant in packed column bioreactor. Bioprocess Engineering 22 (2): 95–99.

51 51 Karanth, N.G.K., Deo, P.G., and Veenanadig, N.K. (1999). Microbial production of biosurfactants and their importance. Current Science 77: 116–126.

52 52 Rahman, K.S.M., Rahman, T.J., McClean, S. et al. (2002). Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low‐cost raw materials. Biotechnology Progress 18 (6): 1277–1281.

53 53 Rahman, K.S.M., Rahman, T.J., Banat, I.M. et al. (2007). Bioremediation of petroleum sludge using bacterial consortium with biosurfactant. In: Environmental Bioremediation Technologies (eds. S.N. Singh and R.D. Tripathi), 391–408. Berlin, Heidelberg: Springer.

54 54 Asmer, H.J., Lang, S., Wagner, F., and Wray, V. (1988). Microbial production, structure elucidation and bioconversion of sophorose lipids. Journal of the American Oil Chemists Society 65 (9): 1460–1466.

55 55 Besson, F., Peypoux, F., Michel, G., and Delcambe, L. (1976). Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. The Journal of Antibiotics 29 (10): 1043–1049.

56 56 Nitschke, M. and Pastore, G.M. (2006). Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresource Technology 97 (2): 336–341.

57 57 Gautam, K.K. and Tyagi, V.K. (2006). Microbial surfactants: A review. Journal of Oleo Science 55 (4): 155–166.

58 58 Zinjarde, S.S. and Pant, A. (2002). Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms 42 (1): 67–73.

59 59 Raza, Z.A., Rehman, A., Khan, M.S., and Khalid, Z.M. (2007). Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation 18 (1): 115–121.

60 60 Ilori, M.O., Amobi, C.J., and Odocha, A.C. (2005). Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61 (7): 985–992.

61 61 Ashby, R.D., McAloon, A.J., Solaiman, D.K. et al. (2013). A process model for approximating the production costs of the fermentative synthesis of sophorolipids. Journal of Surfactants and Detergents 16 (5): 683–691.

62 62 Rodrigues, L.R., Teixeira, J.A., and Oliveira, R. (2006). Low‐cost fermentative medium for biosurfactant production by probiotic bacteria. Biochemical Engineering Journal 32 (3): 135–142.

63 63 Daniels, L., Linhardt, R.J., Bryan, B.A., Mayerl, F. and Pickenhagen, W., Method for producing rhamnose. University of Iowa Research Foundation (UIRF) (1990) US Patent 4,933,281.

64 64 Calvo, C., Toledo, F.L., Pozo, C. et al. (2004). Biotechnology of bioemulsifiers produced by micro‐organisms. Journal of Food Agriculture and Environment 2 (3): 238–243.

65 65 Kosaric, N., Cairns, W.L., Gray, N.C.C. et al. (1984). The role of nitrogen in multi organism strategies for biosurfactant production. Journal of the American Oil Chemists' Society 61 (11): 1735–1743.

66 66 Luna, J.M., Rufino, R.D., and Sarubbo, L.A. (2016). Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Safety and Environmental Protection 102: 558–566.

67 67 Mulligan, C.N., Yong, R.N., and Gibbs, B.F. (1999). Removal of heavy metals from contaminated soil and sediments using the biosurfactant surfactin. Journal of Soil Contamination 8 (2): 231–254.

68 68 Singh, A.K. and Cameotra, S.S. (2013). Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environmental Science and Pollution Research 20 (10): 7367–7376.

69 69 Das, P., Mukherjee, S., and Sen, R. (2009). Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresource Technology 100 (20): 4887–4890.

70 70 Rufino, R.D., Rodrigues, G.I.B., Campos‐Takaki, G.M. et al. (2011). Application of a yeast biosurfactant in the removal of heavy metals and hydrophobic contaminant in a soil used as slurry barrier. Applied and Environmental Soil Science 2011: 1–7.

71 71 Diaz, M.A., De Ranson, I.U., Dorta, B. et al. (2015). Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil and Sediment Contamination: An International Journal 24 (1): 16–29.

72 72 Mekwichai, P., Tongcumpou, C., Kittipongvises, S., and Tuntiwiwattanapun, N. (2020). Simultaneous biosurfactant‐assisted remediation and corn cultivation on cadmium‐contaminated soil. Ecotoxicology and Environmental Safety 192: 110–298.

73 73 Grand View Research (2015). Available at: https://www.grandviewresearch.com/industry‐analysis/biosurfactants‐industry. Accessed March 8, 2018.

74 74 Global Market Insights (2018). Available at: https://www.gminsights.com/industry‐analysis/biosurfactantsmarket‐report. Accessed March 8, 2018.

75 75 Markets and Markets (2017). Available at: https://www.marketsandmarkets.com/Market‐Reports/biosurfactant‐market‐163644922.html. Accessed March 8, 2018.

76 76 Research and Markets (2017). Available at: https://www.researchandmarkets.com/reports/4437552/biosurfactants‐marketby‐type‐glycolipids#pos‐1. Accessed March 8, 2018.

77 77 Zouboulis, A.I., Loukidou, M.X., and Matis, K.A. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal‐polluted soils. Process Biochemistry 39 (8): 909–916.

Biosurfactants for a Sustainable Future

Подняться наверх