Читать книгу Recent Advances in Polyphenol Research - Группа авторов - Страница 56

References

Оглавление

1 Abirami, A., Uthra, S., and Arumugam, M. (2018). Nutritional value of seaweeds and their potential pharmacological role of polyphenolic substances. Journal of Emerging Technologies and Innovative Research (JETIR) 5: 930–939.

2 Alarcomicronn, R., Pardo‐de‐Santayana, M., Priestley, C., et al. (2015). Medicinal and local food plants in the south of Alava (Basque country, Spain). Journal of Ethnopharmacology 176: 207–224.

3 Al‐Gubory, K., and Laher, I. (eds.). (2018). Nutritional Antioxidant Therapies: Treatments and Perspectives. NY: Springer.

4  Ali‐Shtayeh, M., Jamous, R., and Abu Zaitoun, S. (2015). A comprehensive science‐based field assessment of bioactive properties of the native plants of Palestine. Journal of Biodiversity, Bioprospecting and Development 2: 151.

5 Allkin, B. (2017). Useful plants—medicines: At least 28,187 plant species are currently recorded as being of medicinal use. In: State of the World’s Plants 2017 (ed. K.J. Willis). London (UK).

6 American Diabetes Association (2018). http.www.diabetes.org.

7 Andrae‐Marobela, K., Ntumy, A., Makobela, M., et al. (2012). “Now I heal with pride”—the application of screens‐to‐nature technology to indigenous knowledge systems research in Botswana: Implications for drug discovery. In: Drug Discovery in Africa. Impacts of Genomics, Natural Products, Traditional Medicines, Insights into Medicinal Chemistry, and Technology Platforms in Pursuit of New Drugs (eds. K. Chibale, M. Davies‐Coleman and C. Masimirembwa), 239–264. Heidelberg: Springer‐Verlag.

8 Bittel, J. (2018) Lemurs may be making medicine out of millipedes. National Geographic, 03 August 2018.

9 Braga, P.C., Antonacci, R., Wang, Y.Y., et al. (2013). Comparative antioxidant activity of cultivated and wild Vaccinium species investigated by EPR, human neutrophil burst and COMET assay. European Review for Medical and Pharmacological Sciences 17 (15): 1987–1999.

10 Burns Kraft, T.F., Dey, M., Rogers, et al. (2008). Phytochemical composition and metabolic performance‐enhancing activity of dietary berries traditionally used by native North Americans. Journal of Agricultural and Food Chemistry 56 (3): 654–660.

11 Buttriss, J. (2012). Plant Foods and Health. In: Phytonutrients (eds. A. Salter, H. Wiseman and G. Tucker), 1–51. Blackwell Publishing Ltd.

12 Caesar, L. and Cech, N.B. (2019). Synergy and antagonism in natural product extracts: when 1+1 does not equal two. Natural Product Reports 36, 869–888. doi: 10.1039/C9NP00011A.

13 Cordova, A.C., and Sumpio, B.E. (2009). Polyphenols are medicine: Is it time to prescribe red wine for our patients? The International Journal of Angiology: Official Publication of the International College of Angiology, Inc, 18 (3): 111–117.

14 Dar, R., Shahnawaz, M., Rasool, S., and Qazi, P. (2017). Natural product medicines: A literature update. J. Phytopharmacol. 6: 340–342.

15 Densmore, F. (1974). How Indians Use Wild Plants for Food, Medicine and Crafts. New York, New York: Dover Publications.

16 Dhami, N., and Mishra, A. (2015). Phytochemical variation: How to resolve the quality controversies of herbal medicinal products? Journal of Herbal Medicine 5: 118–127.

17 Drozdz, P., Seziene, V., and Pyrzynska, K. (2018). Mineral composition of wild and cultivated blueberries. Biological Trace Element Research 181 (1): 173–177.

18 Dunlap, K.L., Reynolds, A.J., and Duffy, L.K. (2006). Total antioxidant power in sled dogs supplemented with blueberries and the comparison of blood parameters associated with exercise. Comparative Biochemistry and Physiology.Part A, Molecular and Integrative Physiology 143 (4): 429–434.

19 Engel, C. (2007). Zoopharmacognosy. In: Veterinary Herbal Medicine (eds. S. Wynn, and B. Fougere), 7–15. St. Louis Missouri: Mosby Elsevier.

20 Esposito, D., Overall, J., Grace, M., et al. (2019). Alaskan berry extracts promote dermal wound repair through modulation of bioenergetics and integrin signaling. Frontiers in Pharmacology 10: 1058. doi: 10.3389/fphar.2019.01058.

21  Flint, C.G., Robinson, E.S., Kellogg, J., et al. (2011). Promoting wellness in Alaskan villages: Integrating traditional knowledge and science of wild berries. EcoHealth, 8 (2): 199–209.

22 Goetz, G. (2012). Nutrition a pressing concern for American Indians. Food Safety News 5, March 2012.

23 Grace, M., Ribnicky, D., Kuhn, P. et al. (2009). Hypoglycemic activity of a novel anthocyanin‐rich formulation from lowbush blueberry, Vaccinium angustifolium Aiton. Phytomedicine 16: 406–415.

24 Grace, M., Esposito, D., Dunlap, K.L., and Lila, M.A. (2014). Comparative analysis of phenolic content and profile, antioxidant capacity, and anti‐inflammatory bioactivity in wild Alaskan and commercial vaccinium berries. Journal of Agricultural and Food Chemistry 62: 4007–4017.

25 Gustafson, S.J., Yousef, G.G., Grusak, M.A., and Lila, M.A. (2012). Effect of postharvest handling practices on phytochemical concentrations and bioactive potential in wild blueberry fruit. Journal of Berry Research 2: 215–227.

26 Holdt, S., and Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology 23: 543–597.

27 Jacobsen, C., Sorensen, A., Holdt, S., et al. (2019). Novel antioxidants from seaweed. Annual Review of Food Science and Technology 10: 541–568.

28 Joseph, G., Faran, M., Raskin, I., et al. (2014). Medicinal plants of Israel: A model approach to enable an efficient, extensive, and comprehensive field survey. Journal of Biodiversity, Bioprospecting and Development 1: 134.

29 Karlsons, A., Osvalde, A., Ceksere, G., and Pormale, J. (2018). Research on the mineral composition of cultivated and wild blueberries and cranberries. Agronomy Research 6: 454–463.

30 Kellogg, J., Croom, B., Plundrich, N., et al. (2016). Engaging American Indian/Alaska Native (AI/AN) students with participatory bioexploration assays. NACTA Journal 60: 42–50.

31 Kellogg, J., Esposito, D., Grace, M., Komarnytsky, S., and Lila, M. (2015). Alaskan seaweeds lower inflammation in RAW 264.7 macrophages and decrease lipid accumulation in 3T3‐L1 adipocytes. Journal of Functional Foods 15: 396–407.

32 Kellogg, J., Grace, M.H., and Lila, M.A. (2014). Phlorotannins from Alaskan seaweed inhibit carbolytic enzyme activity. Marine Drugs 12 (10): 5277–5294.

33 Kellogg, J., Higgs, C., and Lila, M.A. (2011). Prospects for commercialization of an Alaska native wild resource as a commodity crop. Journal of Entrepreneurship 20: 77–101.

34 Kellogg, J., and Lila, M.A. (2013). Chemical and in vitro assessment of Alaskan coastal vegetation antioxidant capacity. Journal of Agricultural and Food Chemistry 61 (46): 11025–11032.

35 Kellogg, J., Wang, J., Flint, C. et al. (2010). Alaskan wild berry resources and human health under the cloud of climate change. Journal of Agricultural and Food Chemistry 58 (7): 3884–3900.

36 Krebs, J. (2013). Food. A very short introduction. Oxford, UK: Oxford University Press.

37 Li, Y., Zhang, J.J., Xu, D.P. et al. (2016). Bioactivities and health benefits of wild fruits. International Journal of Molecular Sciences 17 (8): 1258–1285.

38 Lila, M.A., Burton‐Freeman, B., Grace, M., and Kalt, W. (2016). Unraveling anthocyanin bioavailability for human health. Annual Reviews Food Science and Technology 7: 17.1–17.19.

39 Lila, M.A., Kellogg, J., Grace, M.H., Yousef, G.G., Kraft, T.B., and Rogers, R.B. (2014). Stressed for success: How the berry’s wild origins result in multifaceted health protections. Acta Horticulturae (ISHS) 1017: 23–43.

40  Margina, D., Ilie, M., Gradinaru, D., et al. (2015). Natural products—friends or foes? Toxicology Letters, 236 (3): 154–167.

41 McOliver, C.A., Camper, A.K., Doyle, et al. (2015). Community‐based research as a mechanism to reduce environmental health disparities in American Indian and Alaska Native communities. International Journal of Environmental Research and Public Health 12 (4): 4076–4100.

42 Moerman, D.E. (1996). An analysis of the food plants and drug plants of Native North America. Journal of Ethnopharmacology 52 (1): 1–22.

43 Nieman, D.C., Kay, C.D., Rathore, A. et al. (2018). Increased plasma levels of gut‐derived phenolics linked to walking and running following 2‐weeks flavonoid supplementation. Nutrients 10: 1718.

44 Nieman, D.C., Lila, M.A., and Gillett, N. (2019). Immunometabolism: A multi‐omics approach to interpreting the influence of exercise and diet on the immune system. Annual Reviews Food Science and Technology 10: 6.1–6.23.

45 Nuno, K., Villarruel‐Lopez, A., Puebla‐Perez, A., et al. (2013). Effects of the marine microalgae Isochrysis galbana and Nannochloropsis ocula in diabetic rats. Journal of Functional Foods 5: 106–115.

46 Ozgen, M., Serce, S., Gunduz, K., et al. (2007). Determining total phenolics and antioxidant activity of selected Fragaria genotypes. Asian Journal of Chemistry 19: 5573–5581.

47 Paradis, M.E., Couture, P., and Lamarche, B. (2011). A randomised crossover placebo‐controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme 36 (6): 913–919.

48 Phan, M., Paterson, J., Bucknall, M., and Arcot, J. (2018). Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Critical Reviews in Food Science and Nutrition 58 (8): 1310–1329.

49 Pinela, J., Carvalho, A.M., and Ferreira, I.C.F.R. (2017). Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 110: 165–188.

50 Reyes‐Garcia, V., Menendez Baceta, G., Aceituno‐Mata, L., et al. (2015). From famine foods to delicatessen: Interpreting trends in the use of wild edible plants through cultural ecosystem services. Ecological Economics 120: 303–311.

51 Rico, D., Diana, A., Milton‐Laskibar, I., et al. (2018). Characterization and in vitro evaluation of seaweed species as potential functional ingredients to ameliorate metabolic syndrome. Journal of Functional Foods 46: 185–194.

52 Sasipriya, G., Maria, C.L., and Siddhuraju, P. (2014). Influence of pressure cooking on antioxidant activity of wild (ensete superbum) and commercial banana (musa paradisiaca var. monthan) unripe fruit and flower. Journal of Food Science and Technology 51 (10): 2517–2525.

53 Schatzker, M. (2015). The Dorito Effect. Simon and Schuster.

54 Schmidt, B.M., and Klaser Cheng, D.M. (eds.). (2017). Ethnobotany. A phytochemical perspective. Hoboken, New Jersey: Wiley Blackwell.

55  Schreckinger, M.E., Lotton, J., Lila, M.A., and de Mejia, E.G. (2010). Berries from South America: A comprehensive review on chemistry, health potential, and commercialization. Journal of Medicinal Food 13 (2): 233–246.

56 Sebag‐Montefiore, C. (2017). The wild bunch. American Way, March Issue, 58.

57 Soukand, R. (2016). Perceived reasons for changes in the use of wild food plants in Saaremaa, Estonia. Appetite 107: 231–241.

58 Stowe, C. (1976). History of veterinary pharmacotherapeutics in the United States. Journal of the Veterinary Medicine Association 169: 83–89.

59 Sueda, K., Hart, B., and Cliff, K. (2008). Characterisation of plant eating in dogs. Applied Animal Behaviour Science 111: 120–132.

60 Wapner, J. (2012). Where the wild berries grow. Cosmos 42: 74–78.

61 Wynn, S., and Fougere, B. (2007). Veterinary Herbal Medicine. St. Louis Missouri: Mosby Elsevier.

62 Zhang, H., Mittal, N., Leamy, L.J., et al. (2016). Back into the wild‐apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications 10 (1): 5–24.

Recent Advances in Polyphenol Research

Подняться наверх