Читать книгу Uric Acid in Chronic Kidney Disease - Группа авторов - Страница 17

References

Оглавление

1 Martín NE: Hipouricemia y manejo renal del ácido úrico. Nefrología 2011;31:44–50.

2 Bobulescu IA, Moe OW: Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis 2012;19:358–371.

3 Döring A, Gieger C, Mehta D, et al: SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet 2008;40:430–436.

4 Maesaka JK, Fishbane S: Regulation of renal urate excretion: a critical review. Am J Kidney Dis 1998;32:917–933.

5 Ichida K, Matsuo H, Takada T, et al: Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 2012;3:764.

6 Huls M, Brown CD, Windass AS, et al: The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 2008;73:220–225.

7 Diamond HS, Paolino JS: Evidence for a postsecretory reabsorptive site for uric acid in man. J Clin Invest 1973;52:1491–1499.

8 Enomoto A, Kimura H, Chairoungdua A, et al: Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 2002;417:447–452.

9 Koepsell H, Endou H: The SLC22 drug transporter family. Pflugers Arch 2004;447:666–676.

10 Jutabha P, Kanai Y, Hosoyamada M, et al: Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. J Biol Chem 2003;278:27930–27938.

11 Vitart V, Rudan I, Hayward C, et al: SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet 2008;40:437–442.

12 Phay JE, Hussain HB, Moley JF: Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics 2000;66:217–220.

13 Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH: Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem 2004;279:16229–16236.

14 Matsuo H, Chiba T, Nagamori S, et al: Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 2008;83:744–751.

15 Guggino SE, Aronson PS: Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes. J Clin Invest 1985;76:543–547.

16 Kahn AM: Indirect coupling between sodium and urate transport in the proximal tubule. Kidney Int 1989;36:378–384.

17 Dehghan A, Köttgen A, Yang Q, et al: Association of three genetic loci with uric acid concentration and risk of gout: a genomewide association study. Lancet 2008;372:1953–1961.

18 Nakagawa T, Tuttle KR, Short RA, Johnson RJ: Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol 2005;1:80–86.

19 Choi HK, Curhan G: Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ 2008;336:309–312.

20 Choi JW, Ford ES, Gao X, Choi HK: Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum 2008;59:109–116.

21 Ichida K, Hosoyamada M, Hisatome I, et al: Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 2004;15:164–173.

22 Anzai N, Ichida K, Jutabha P, et al: Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem 2008;283:26834–26838.

23 Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M: Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA 2009;106:10338–10342.

24 Urano W, Taniguchi A, Anzai N, et al: Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann Rheum Dis 2010;69:1232–1234.

25 Kolz M, Johnson T, Sanna S, et al: Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet 2009;5:e1000504.

26 Endou H, Anzai N: Urate transport across the apical membrane of renal proximal tubules. Nucleosides Nucleotides Nucleic Acids 2008;27:578–584.

27 Lipkowitz MS, Leal-Pinto E, Rappoport JZ, Najfeld V, Abramson RG: Functional reconstitution, membrane targeting, genomic structure, and chromosomal localization of a human urate transporter. J Clin Invest 2001;107:1103–1115.

Jorge Andrade Sierra, MD, PhD

Department of Physiology, University Health Sciences Center (Centro Universitario

de Ciencias de la Salud), University of Guadalajara

Sierra Mojada Nº950, Col. Independencia

Guadalajara, Jalisco, CP 44340 (México)

E-Mail jorg_Andrade@hotmail.com

Uric Acid in Chronic Kidney Disease

Подняться наверх