Читать книгу Spectrums of Amyotrophic Lateral Sclerosis - Группа авторов - Страница 48

REFERENCES

Оглавление

1 1. Ryan, M., Heverin, M., McLaughlin, R.L., and Hardiman, O. (2019). Lifetime risk and heritability of amyotrophic lateral sclerosis. JAMA Neurol 76 (11): 1367–1374.

2 2. Al‐Chalabi, A., Fang, F., Hanby, M.F. et al. (2010). An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry 81 (12): 1324–1326.

3 3. Rosen, D.R., Siddique, T., Patterson, D. et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362 (6415): 59–62.

4 4. Renton, A.E., Chio, A., and Traynor, B.J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17 (1): 17–23.

5 5. Kaur, S.J., McKeown, S.R., and Rashid, S. (2016). Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 577 (2): 109–118.

6 6. Parton, M.J., Broom, W., Andersen, P.M. et al. (2002). D90A‐SOD1 mediated amyotrophic lateral sclerosis: a single founder for all cases with evidence for a Cis‐acting disease modifier in the recessive haplotype. Hum Mutat 20 (6): 473.

7 7. Zou, Z.Y., Zhou, Z.R., Che, C.H. et al. (2017). Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta‐analysis. J Neurol Neurosurg Psychiatry 88 (7): 540–549.

8 8. Chio, A., Mazzini, L., D'Alfonso, S. et al. (2018). The multistep hypothesis of ALS revisited: the role of genetic mutations. Neurology 91 (7): e635–e642.

9 9. Prudencio, M., Hart, P.J., Borchelt, D.R., and Andersen, P.M. (2009). Variation in aggregation propensities among ALS‐associated variants of SOD1: correlation to human disease. Hum Mol Genet 18 (17): 3217–3226.

10 10. Polymenidou, M. and Cleveland, D.W. (2011). The seeds of neurodegeneration: prion‐like spreading in ALS. Cell 147 (3): 498–508.

11 11. Prudencio, M. and Borchelt, D.R. (2011). Superoxide dismutase 1 encoding mutations linked to ALS adopts a spectrum of misfolded states. Mol Neurodegener 6: 77.

12 12. Hayashi, Y., Homma, K., and Ichijo, H. (2016). SOD1 in neurotoxicity and its controversial roles in SOD1 mutation‐negative ALS. Adv Biol Regul 60: 95–104.

13 13. Gill, C., Phelan, J.P., Hatzipetros, T. et al. (2019). SOD1‐positive aggregate accumulation in the CNS predicts slower disease progression and increased longevity in a mutant SOD1 mouse model of ALS. Sci Rep 9 (1): 6724.

14 14. Saccon, R.A., Bunton‐Stasyshyn, R.K., Fisher, E.M., and Fratta, P. (2013). Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain 136 (Pt 8): 2342–2358.

15 15. Sreedharan, J., Blair, I.P., Tripathi, V.B. et al. (2008). TDP‐43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319 (5870): 1668–1672.

16 16. Kabashi, E., Valdmanis, P.N., Dion, P. et al. (2008). TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40 (5): 572–574.

17 17. Harrison, A.F. and Shorter, J. (2017). RNA‐binding proteins with prion‐like domains in health and disease. Biochem J 474 (8): 1417–1438.

18 18. Van Deerlin, V.M., Leverenz, J.B., Bekris, L.M. et al. (2008). TARDBP mutations in amyotrophic lateral sclerosis with TDP‐43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7 (5): 409–416.

19 19. Borghero, G., Pugliatti, M., Marrosu, F. et al. (2014). Genetic architecture of ALS in Sardinia. Neurobiol Aging 35 (12): 2882 e7–e12.

20 20. Orru, S., Manolakos, E., Orru, N. et al. (2012). High frequency of the TARDBP p.Ala 382Thr mutation in Sardinian patients with amyotrophic lateral sclerosis. Clin Genet 81 (2): 172–178.

21 21. Tollervey, J.R., Curk, T., Rogelj, B. et al. (2011). Characterizing the RNA targets and position‐dependent splicing regulation by TDP‐43. Nat Neurosci 14 (4): 452–458.

22 22. Van Nostrand, E.L.V., Freese, P., Pratt, G.A., et al. (2020). A large‐scale binding and functional map of human RNA binding proteins. Nature 583: 711–719. 2018.

23 23. Deshaies, J.E., Shkreta, L., Moszczynski, A.J. et al. (2018). TDP‐43 regulates the alternative splicing of hnRNP A1 to yield an aggregation‐prone variant in amyotrophic lateral sclerosis. Brain 141 (5): 1320–1333.

24 24. Humphrey, J., Emmett, W., Fratta, P. et al. (2017). Quantitative analysis of cryptic splicing associated with TDP‐43 depletion. BMC Med Genet 10 (1): 38.

25 25. Ling, J.P., Pletnikova, O., Troncoso, J.C., and Wong, P.C. (2015). TDP‐43 repression of nonconserved cryptic exons is compromised in ALS‐FTD. Science 349 (6248): 650–655.

26 26. Fratta, P., Sivakumar, P., Humphrey, J. et al. (2018). Mice with endogenous TDP‐43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO J 37 (11): e98684.

27 27. Chou, C.C., Zhang, Y., Umoh, M.E. et al. (2018). TDP‐43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat Neurosci 21 (2): 228–239.

28 28. Mackenzie, I.R., Bigio, E.H., Ince, P.G. et al. (2007). Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61 (5): 427–434.

29 29. Berning, B.A. and Walker, A.K. (2019). The pathobiology of TDP‐43 C‐terminal fragments in ALS and FTLD. Front Neurosci 13: 335.

30 30. Sasaguri, H., Chew, J., Xu, Y.F. et al. (2016). The extreme N‐terminus of TDP‐43 mediates the cytoplasmic aggregation of TDP‐43 and associated toxicity in vivo;. Brain Res 1647: 57–64.

31 31. Mann, J.R., Gleixner, A.M., Mauna, J.C. et al. (2019). RNA binding antagonizes neurotoxic phase transitions of TDP‐43. Neuron 102 (2): 321–338. e8.

32 32. Voigt, A., Herholz, D., Fiesel, F.C. et al. (2010). TDP‐43‐mediated neuron loss in vivo; requires RNA‐binding activity. PLoS One 5 (8): e12247.

33 33. Kwiatkowski, T.J. Jr., Bosco, D.A., Leclerc, A.L. et al. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323 (5918): 1205–1208.

34 34. Vance, C., Rogelj, B., Hortobagyi, T. et al. (2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323 (5918): 1208–1211.

35 35. Shang, Y. and Huang, E.J. (2016). Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res 1647: 65–78.

36 36. Colombrita, C., Onesto, E., Megiorni, F. et al. (2012). TDP‐43 and FUS RNA‐binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post‐transcriptional fate in motoneuron‐like cells. J Biol Chem 287 (19): 15635–15647.

37 37. Ederle, H. and Dormann, D. (2017). TDP‐43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett 591 (11): 1489–1507.

38 38. Schwartz, J.C., Ebmeier, C.C., Podell, E.R. et al. (2012). FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser 2. Genes Dev 26 (24): 2690–2695.

39 39. Shiihashi, G., Ito, D., Yagi, T. et al. (2016). Mislocated FUS is sufficient for gain‐of‐toxic‐function amyotrophic lateral sclerosis phenotypes in mice. Brain 139 (Pt 9): 2380–2394.

40 40. Renton, A.E., Majounie, E., Waite, A. et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD. Neuron 72 (2): 257–268.

41 41. DeJesus‐Hernandez, M., Mackenzie, I.R., Boeve, B.F. et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS. Neuron 72 (2): 245–256.

42 42. Morita, M., Al‐Chalabi, A., Andersen, P.M. et al. (2006). A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66 (6): 839–844.

43 43. Nordin, A., Akimoto, C., Wuolikainen, A. et al. (2015). Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non‐neuronal tissues in 18 patients with ALS or FTD. Hum Mol Genet 24 (11): 3133–3142.

44 44. Iacoangeli, A., Al Khleifat, A., Jones, A.R. et al. (2019). C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathol Commun 7 (1): 115.

45 45. Ross, J.P., Leblond, C.S., Catoire, H. et al. (2019). Somatic expansion of the C9orf72 hexanucleotide repeat does not occur in ALS spinal cord tissues. Neurol Genet 5 (2): e317.

46 46. Babic Leko, M., Zupunski, V., Kirincich, J. et al. (2019). Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion. Behav Neurol 2019: 2909168.

47 47. Ishiguro, A., Kimura, N., Watanabe, Y. et al. (2016). TDP‐43 binds and transports G‐quadruplex‐containing mRNAs into neurites for local translation. Genes Cells 21 (5): 466–481.

48 48. Prudencio, M., Belzil, V.V., Batra, R. et al. (2015). Distinct brain transcriptome profiles in C9orf72‐associated and sporadic ALS. Nat Neurosci 18 (8): 1175–1182.

49 49. Moens, T.G., Mizielinska, S., Niccoli, T. et al. (2018). Sense and antisense RNA are not toxic in drosophila models of C9orf72‐associated ALS/FTD. Acta Neuropathol 135 (3): 445–457.

50 50. Mori, K., Weng, S.M., Arzberger, T. et al. (2013). The C9orf72 GGGGCC repeat is translated into aggregating dipeptide‐repeat proteins in FTLD/ALS. Science 339 (6125): 1335–1338.

51 51. Swaminathan, A., Bouffard, M., Liao, M. et al. (2018). Expression of C9orf72‐related dipeptides impairs motor function in a vertebrate model. Hum Mol Genet 27 (10): 1754–1762.

52 52. Moens, T.G., Niccoli, T., Wilson, K.M. et al. (2019). C9orf72 arginine‐rich dipeptide proteins interact with ribosomal proteins in vivo; to induce a toxic translational arrest that is rescued by eIF1A. Acta Neuropathol 137 (3): 487–500.

53 53. Shi, K.Y., Mori, E., Nizami, Z.F. et al. (2017). Toxic PRn poly‐dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export. Proc Natl Acad Sci U S A 114 (7): E1111–E1117.

54 54. Taylor, J.P., Brown, R.H. Jr., and Cleveland, D.W. (2016). Decoding ALS: from genes to mechanism. Nature 539 (7628): 197–206.

55 55. Brenner, D. and Weishaupt, J.H. (2019). Update on amyotrophic lateral sclerosis genetics. Curr Opin Neurol 32 (5): 735–739.

56 56. Corcia, P., Couratier, P., Blasco, H. et al. (2017). Genetics of amyotrophic lateral sclerosis. Rev Neurol (Paris) 173 (5): 254–262.

57 57. Leblond, C.S., Kaneb, H.M., Dion, P.A., and Rouleau, G.A. (2014). Dissection of genetic factors associated with amyotrophic lateral sclerosis. Exp Neurol 262 (Pt B): 91–101.

58 58. Mathis, S., Couratier, P., Julian, A. et al. (2017). Current view and perspectives in amyotrophic lateral sclerosis. Neural Regen Res 12 (2): 181–184.

59 59. Zufiria, M., Gil‐Bea, F.J., Fernandez‐Torron, R. et al. (2016). ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 142: 104–129.

60 60. MacNair, L., Xiao, S., Miletic, D. et al. (2016). MTHFSD and DDX58 are novel RNA‐binding proteins abnormally regulated in amyotrophic lateral sclerosis. Brain 139 (Pt 1): 86–100.

61 61. Chia, R., Chiò, A., and Traynor, B.J. (2018). Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol 17 (1): 94–102.

62 62. Smith, B.N., Topp, S.D., Fallini, C. et al. (2017). Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci Transl Med 9 (388): eaad9157.

63 63. Liu, X., Wu, C., He, J. et al. (2019). Two rare variants of the ANXA11 gene identified in Chinese patients with amyotrophic lateral sclerosis. Neurobiol Aging 74: 235 e9–e12.

64 64. Tsai, P.C., Liao, Y.C., Jih, K.Y. et al. (2018). Genetic analysis of ANXA11 variants in a Han Chinese cohort with amyotrophic lateral sclerosis in Taiwan. Neurobiol Aging 72: 188 e1–e2.

65 65. Zhang, K., Liu, Q., Liu, K. et al. (2018). ANXA11 mutations prevail in Chinese ALS patients with and without cognitive dementia. Neurol Genet 4 (3): e237.

66 66. Ferrara, D., Pasetto, L., Bonetto, V., and Basso, M. (2018). Role of extracellular vesicles in amyotrophic lateral sclerosis. Front Neurosci 12: 574.

67 67. Cooper‐Knock, J., Moll, T., Ramesh, T. et al. (2019). Mutations in the glycosyltransferase domain of GLT8D1 are associated with familial amyotrophic lateral sclerosis. Cell Rep 26 (9): 2298–2306. e5.

68 68. Consortium PMAS (2018). Project MinE: study design and pilot analyses of a large‐scale whole‐genome sequencing study in amyotrophic lateral sclerosis. Eur J Hum Genet 26 (10): 1537–1546.

69 69. Melamed, Z., Lopez‐Erauskin, J., Baughn, M.W. et al. (2019). Premature polyadenylation‐mediated loss of stathmin‐2 is a hallmark of TDP‐43‐dependent neurodegeneration. Nat Neurosci 22 (2): 180–190.

70 70. Klim, J.R., Williams, L.A., Limone, F. et al. (2019). ALS‐implicated protein TDP‐43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci 22 (2): 167–179.

71 71. Clark, J.A., Yeaman, E.J., Blizzard, C.A. et al. (2016). A case for microtubule vulnerability in amyotrophic lateral sclerosis: altered dynamics during disease. Front Cell Neurosci 10: 204.

72 72. Brenner, D., Yilmaz, R., Muller, K. et al. (2018). Hot‐spot KIF5A mutations cause familial ALS. Brain 141 (3): 688–697.

73 73. Nicolas, A., Kenna, K.P., Renton, A.E. et al. (2018). Genome‐wide analyses identify KIF5A as a novel ALS gene. Neuron 97 (6): 1268–1283. e6.

74 74. McCann, E.P., Williams, K.L., Fifita, J.A. et al. (2017). The genotype‐phenotype landscape of familial amyotrophic lateral sclerosis in Australia. Clin Genet 92 (3): 259–266.

75 75. Gibson, S.B., Figueroa, K.P., Bromberg, M.B. et al. (2014). Familial clustering of ALS in a population‐based resource. Neurology 82 (1): 17–22.

76 76. Ryan, M., Heverin, M., Doherty, M.A. et al. (2018). Determining the incidence of familiality in ALS: a study of temporal trends in Ireland from 1994 to 2016. Neurol Genet 4 (3): e239.

77 77. Hanby, M.F., Scott, K.M., Scotton, W. et al. (2011). The risk to relatives of patients with sporadic amyotrophic lateral sclerosis. Brain 134 (Pt 12): 3454–3457.

78 78. Chesi, A., Staahl, B.T., Jovicic, A. et al. (2013). Exome sequencing to identify de novo mutations in sporadic ALS trios. Nat Neurosci 16 (7): 851–855.

79 79. Conte, A., Lattante, S., Zollino, M. et al. (2012). P525L FUS mutation is consistently associated with a severe form of juvenile amyotrophic lateral sclerosis. Neuromuscul Disord 22 (1): 73–75.

80 80. Leblond, C.S., Webber, A., Gan‐Or, Z. et al. (2016). De novo FUS P525L mutation in Juvenile amyotrophic lateral sclerosis with dysphonia and diplopia. Neurol Genet 2 (2): e63.

81 81. Cady, J., Allred, P., Bali, T. et al. (2015). Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes. Ann Neurol 77 (1): 100–113.

82 82. Giannoccaro, M.P., Bartoletti‐Stella, A., Piras, S. et al. (2017). Multiple variants in families with amyotrophic lateral sclerosis and frontotemporal dementia related to C9orf72 repeat expansion: further observations on their oligogenic nature. J Neurol 264 (7): 1426–1433.

83 83. van Blitterswijk, M., van Es, M.A., Hennekam, E.A. et al. (2012). Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum Mol Genet 21 (17): 3776–3784.

84 84. Murphy, N.A., Arthur, K.C., Tienari, P.J. et al. (2017). Age‐related penetrance of the C9orf72 repeat expansion. Sci Rep 7 (1): 2116.

85 85. McGoldrick, P., Zhang, M., van Blitterswijk, M. et al. (2018). Unaffected mosaic C9orf72 case: RNA foci, dipeptide proteins, but upregulated C9orf72 expression. Neurology 90 (4): e323–e331.

86 86. Morgan, S., Shatunov, A., Sproviero, W. et al. (2017). A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain 140 (6): 1611–1618.

87 87. Lattante, S., Ciura, S., Rouleau, G.A., and Kabashi, E. (2015). Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). Trends Genet 31 (5): 263–273.

88 88. Al‐Chalabi, A., Calvo, A., Chio, A. et al. (2014). Analysis of amyotrophic lateral sclerosis as a multistep process: a population‐based modelling study. Lancet Neurol 13 (11): 1108–1113.

89 89. Niccoli, T., Partridge, L., and Isaacs, A.M. (2017). Ageing as a risk factor for ALS/FTD. Hum Mol Genet 26 (R2): R105–R113.

90 90. Wanke, K.A., Devanna, P., and Vernes, S.C. (2018). Understanding neurodevelopmental disorders: the promise of regulatory variation in the 3'UTRome. Biol Psychiatry 83 (7): 548–557.

91 91. Shaul, O. (2017). How introns enhance gene expression. Int J Biochem Cell Biol 91 (Pt B): 145–155.

92 92. Sabatelli, M., Moncada, A., Conte, A. et al. (2013). Mutations in the 3′ untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. Hum Mol Genet 22 (23): 4748–4755.

93 93. Liu, E.Y., Russ, J., Wu, K. et al. (2014). C9orf72 hypermethylation protects against repeat expansion‐associated pathology in ALS/FTD. Acta Neuropathol 128 (4): 525–541.

94 94. Xi, Z., Zinman, L., Moreno, D. et al. (2013). Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am J Hum Genet 92 (6): 981–989.

95 95. McMillan, C.T., Russ, J., Wood, E.M. et al. (2015). C9orf72 promoter hypermethylation is neuroprotective neuroimaging and neuropathologic evidence. Neurology 84 (16): 1622–1630.

96 96. Xi, Z., Zhang, M., Bruni, A.C. et al. (2015). The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol 129 (5): 715–727.

97 97. Bauer, P.O. (2016). Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide‐repeat proteins expression in cells. Neurosci Lett 612: 204–209.

98 98. Zhang, M., Tartaglia, M.C., Moreno, D. et al. (2017). DNA methylation age‐acceleration is associated with disease duration and age at onset in C9orf72 patients. Acta Neuropathol 134 (2): 271–279.

99 99. Pal, S. and Tyler, J.K. (2016). Epigenetics and aging. Sci Adv 2 (7): e1600584.

100 100. Williams, A.H., Valdez, G., Moresi, V. et al. (2009). Micro RNA‐206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326 (5959): 1549–1554.

101 101. Bruneteau, G., Simonet, T., Bauche, S. et al. (2013). Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression. Brain 136 (Pt 8): 2359–2368.

102 102. Lapucci, A., Cavone, L., Buonvicino, D. et al. (2017). Effect of class II HDAC inhibition on glutamate transporter expression and survival in SOD1‐ALS mice. Neurosci Lett 656: 120–125.

103 103. Pigna, E., Simonazzi, E., Sanna, K. et al. (2019). Histone deacetylase 4 protects from denervation and skeletal muscle atrophy in a murine model of amyotrophic lateral sclerosis. EBioMedicine 40: 717–732.

104 104. Boutillier, A.L., Tzeplaeff, L., and Dupuis, L. (2019). The dark side of HDAC inhibition in ALS. EBioMedicine 41: 38–39.

Spectrums of Amyotrophic Lateral Sclerosis

Подняться наверх