Читать книгу Biomass Valorization - Группа авторов - Страница 19
References
Оглавление1 1. United Nations Sustainable Development Knowledge Platform. (2019). Sustainable development goals. https://sustainabledevelopment.un.org/sdgs (accessed 20 November 2019).
2 2. International Council of Chemical Associations. (2019). Sustainable development. https://www.icca-chem.org/sustainable-development/ (accessed 10 September 2019).
3 3. Speight, J.G. (1999). The Chemistry and Technology of Petroleum. New York: Marcel Dekker.
4 4. Filiciotto, L. and Luque, R. (2018). Nanocatalysis for green chemistry. In: Encyclopedia of Sustainability Science and Technology (ed. R.A. Meyers), 1–28. New York: Springer.
5 5. Eerkes‐Medrano, D., Thompson, R.C., and Aldridge, D.C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75: 63–82. https://doi.org/10.1016/j.watres.2015.02.012.
6 6. Law, K.L. and Thompson, R.C. (2014). Microplastics in the seas. Science 345 (6193): 144–145. https://doi.org/10.1126/science.1254065.
7 7. Aboudah, M. (2015). Dealing with economic sustainability challenges evolving from declining oil production in Saudi Arabia. Master thesis. Michigan Technological University.
8 8. Campbell, C.J. (2013). Campbells Atlas of Oil and Gas Depletion. New York, NY: Springer.
9 9. Climate Change: Vital Signs of the Planet. (2018). https://climate.nasa.gov/ (accessed 14 November 2019).
10 10. World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100 | UN DESA Department of Economic and Social Affairs. (2017). https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed 14 November 2019).
11 11. Anastas, P.T. and Warner, J.C. (1998). Green Chemistry Theory and Practice. New York: Oxford University Press.
12 12. Keijer, T., Bakker, V., and Slootweg, J.C. (2019). Circular chemistry to enable a circular economy. Nature Chemistry 11 (3): 190–195. https://doi.org/10.1038/s41557-019-0226-9.
13 13. Lanzafame, P., Centi, G., and Perathoner, S. (2014). Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low‐carbon chemical production. Chemical Society Reviews 43 (22): 7562–7580. https://doi.org/10.1039/C3CS60396B.
14 14. Sheldon, R.A. (2016). Green chemistry and resource efficiency: towards a green economy. Green Chemistry 18 (11): 3180–3183. https://doi.org/10.1039/c6gc90040b.
15 15. Cong, W.‐F., Jing, J., Rasmussen, J. et al. (2017). Forbs enhance productivity of unfertilised grass‐clover leys and support low‐carbon bioenergy. Scientific Reports 7 (1): 1–10, Article ID 1422. doi: https://doi.org/10.1038/s41598-017-01632-4.
16 16. Mauser, W., Klepper, G., Zabel, F. et al. (2015). Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nature Communications 6 (1): 1–11, Article ID 8946. doi: https://doi.org/10.1038/ncomms9946.
17 17. Woodward, F.I., Lomas, M.R., and Kelly, C.K. (2004). Global climate and the distribution of plant biomes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359 (1450): 1465–1476. https://doi.org/10.1098/rstb.2004.1525.
18 18. Abdel‐Shafy, H.I. and Mansour, M.S.M. (2018). Solid waste issue: sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum 27 (4): 1275–1290.
19 19. European Commission (2019). Renewable Energy: Bioenergy. http://ec.europa.eu/research/energy/index.cfm?pg=area&areaname=renewable_bio (accessed 10 November 2019).
20 20. Obermeier, W.A., Lehnert, L.W., Kammann, C.I. et al. (2016). Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nature Climate Change 7 (2): 137–141. https://doi.org/10.1038/nclimate3191.
21 21. Wu, L., Moteki, T., Gokhale, A.A. et al. (2016). Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1 (1): 32–58. https://doi.org/10.1016/j.chempr.2016.05.002.
22 22. Mousdale, D.M. (2008). Biofuels: Biotechnology, Chemistry and Sustainable Development. Boca Raton, FL: CRC Press.
23 23. Ho, D.P., Ngo, H.H., and Guo, W. (2014). A mini review on renewable sources for biofuel. Bioresource Technology 169: 742–749. https://doi.org/10.1016/j.biortech.2014.07.022.
24 24. Rulli, M.C., Bellomi, D., Cazzoli, A. et al. (2016). The water‐land‐food nexus of first‐generation biofuels. Scientific Reports 6 (1) https://doi.org/10.1038/srep22521.
25 25. Achinas, S. and Euverink, G.J.W. (2016). Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electronic Journal of Biotechnology 23: 44–53. https://doi.org/10.1016/j.ejbt.2016.07.006.
26 26. Lee, W.C. and Kuan, W.C. (2015). Miscanthusas cellulosic biomass for bioethanol production. Biotechnology Journal 10 (6): 840–854. https://doi.org/10.1002/biot.201400704.
27 27. Stoffel, R.B., Neves, P.V., Felissia, F.E. et al. (2017). Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass and Bioenergy 107: 93–101. https://doi.org/10.1016/j.biombioe.2017.09.019.
28 28. Wilkinson, S., Smart, K.A., James, S. et al. (2016). Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach. BioEnergy Research 10 (1): 146–157. https://doi.org/10.1007/s12155-016-9782-7.
29 29. Prasetyo, J., Naruse, K., Kato, T. et al. (2011). Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnology for Biofuels 4 (1): 35. https://doi.org/10.1186/1754-6834-4-35.
30 30. Sims, R.E., Mabee, W., Saddler, J.N. et al. (2010). An overview of second generation biofuel technologies. Bioresource Technology 101 (6): 1570–1580. https://doi.org/10.1016/j.biortech.2009.11.046.
31 31. Pierobon, S.C., Cheng, X., Graham, P.J. et al. (2018). Emerging microalgae technology: a review. Sustainable Energy Fuels 2: 13–38. https://doi.org/10.1039/C7SE00236J.
32 32. Koller, M., Salerno, A., Tuffner, P. et al. (2012). Characteristics and potential of micro algal cultivation strategies: a review. Journal of Cleaner Production 37: 377–388. https://doi.org/10.1016/j.jclepro.2012.07.044.
33 33. Singh, A. and Olsen, S.I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy 88 (10): 3548–3555. https://doi.org/10.1016/j.apenergy.2010.12.012.
34 34. Aro, E.‐M. (2015). From first generation biofuels to advanced solar biofuels. AMBIO 45 (S1): 24–31. https://doi.org/10.1007/s13280-015-0730-0.
35 35. Moravvej, Z., Makarem, M.A., and Rahimpour, M.R. (2019). The fourth generation of biofuel. In: Second and Third Generation of Feedstocks‐The evolution of biofuels (eds. A. Basile and F. Dalena), 557–597. Amsterdam: Elsevier.
36 36. Camia, A., Robert, N., Jonsson, R. et al. (2018). Biomass production, supply, uses and flows in the European Union. JRC Science for policy report https://doi.org/10.2760/539520.
37 37. Xu, C., Nasrollahzadeh, M., Selva, M. et al. (2019). Waste‐to‐wealth: biowaste valorization into valuable bio(nano)materials. Chemical Society Reviews 48: 4791–4822. https://doi.org/10.1039/C8CS00543E.
38 38. Lin, C.S.K. (2018). Chemistry and Chemical Technologies in Waste Valorization. Cham: Springer.
39 39. Seyboth, K., Matschoss, P., Kadner, S. et al. (2012). Intergovernmental panel on climate change. In: Renewable Energy Souces and Climate Change Mitigation (eds. O. Edenhofer, R.P. Madruga and Y. Sokona), 161–208. New York: Cambridge University Press.
40 40. Wang, M., Dewil, R., Maniatis, K. et al. (2019). Biomass‐derived aviation fuels: challenges and perspective. Progress in Energy and Combustion Science 74: 31–49.
41 41. Vassilev, S.V., Baxter, D., Andersen, L.K. et al. (2012). An overview of the organic and inorganic phase composition of biomass. Fuel 94: 1–33. https://doi.org/10.1016/j.fuel.2011.09.030.
42 42. Zabed, H., Sahu, J., Suely, A. et al. (2017). Bioethanol production from renewable sources: current perspectives and technological progress. Renewable and Sustainable Energy Reviews 71: 475–501. https://doi.org/10.1016/j.rser.2016.12.076.
43 43. Bruyn, M.D., Fan, J., Budarin, V.L. et al. (2016). A new perspective in bio‐refining: levoglucosenone and cleaner lignin from waste biorefinery hydrolysis lignin by selective conversion of residual saccharides. Energy & Environmental Science 9 (8): 2571–2574. https://doi.org/10.1039/c6ee01352j.
44 44. Werpy, T.A., Holladay, J.E., and White, J.F. (2004). Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Oak Ridge (TN): Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL).
45 45. Bozell, J.J. and Petersen, G.R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy's “Top 10” revisited. Green Chemistry 12 (4): 539. https://doi.org/10.1039/b922014c.
46 46. Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chemical Society Reviews 41 (4): 1538–1558. https://doi.org/10.1039/c1cs15147a.
47 47. Isikgor, F.H. and Becer, C.R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio‐based chemicals and polymers. Polymer Chemistry 6 (25): 4497–4559. https://doi.org/10.1039/c5py00263j.
48 48. Spierling, S., Knüpffer, E., Behnsen, H. et al. (2018). Bio‐based plastics – a review of environmental, social and economic impact assessments. Journal of Cleaner Production 185: 476–491. https://doi.org/10.1016/j.jclepro.2018.03.014.
49 49. YXY Technology. (2019). https://www.avantium.com/renewable-polymers/yxy-technology/ (accessed 10 September 2019).
50 50. Liu, B. and Zhang, Z. (2016). One‐pot conversion of carbohydrates into furan derivatives via furfural and 5‐hydroxylmethylfurfural as intermediates. ChemSusChem 9 (16): 2015–2036. https://doi.org/10.1002/cssc.201600507.
51 51. Van Zandvoort, I., Wang, Y., Rasrendra, C.B. et al. (2013). Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6 (9): 1745–1758. https://doi.org/10.1002/cssc.201300332.
52 52. Rice, F.A.H. (1958). Effect of aqueous sulfuric acid on reducing sugars. V. Infrared studies on the humins formed by the action of aqueous sulfuric acid on the aldopentoses and on the aldehydes derived from them. Journal of Organic Chemistry 23 (3): 465–468. https://doi.org/10.1021/jo01097a036.
53 53. Hoang, T.M.C., van Eck, E.R.H., Bula, W.P. et al. (2015). Humin based by‐products from biomass processing as a potential carbonaceous source for synthesis gas production. Green Chemistry 17 (2): 959–972. https://doi.org/10.1039/c4gc01324g.
54 54. Girisuta, B. (2007). Levulinic acid from lignocellulosic biomass. PhD thesis. University of Groningen.
55 55. Tang, P. and Yu, J. (2014). Kinetic analysis on deactivation of a solid Brønsted acid catalyst in conversion of sucrose to levulinic acid. Industrial & Engineering Chemistry Research 53 (29): 11629–11637. https://doi.org/10.1021/ie501044c.
56 56. Ferreira‐Leitão, V., Cammarota, M., Aguieiras, E.G. et al. (2017). The protagonism of biocatalysis in green chemistry and its environmental benefits. Catalysts 7 (12): 9. https://doi.org/10.3390/catal7010009.
57 57. Scott, E. L., Bruins, M. E., and Sanders, J. P. M. (2013). Rules for the biobased production of bulk chemicals on a small scale. Wageningen UR Report BCH 2013/016.
58 58. Asghari, F.S. and Yoshida, H. (2006). Acid‐catalyzed production of 5‐hydroxymethyl furfural from d‐fructose in subcritical water. Industrial & Engineering Chemistry Research 45 (7): 2163–2173. https://doi.org/10.1021/ie051088y.
59 59. Roman‐Leshkov, Y. (2006). Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312 (5782): 1933–1937. https://doi.org/10.1126/science.1126337.
60 60. Watanabe, M., Aizawa, Y., Iida, T. et al. (2005). Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydrate Research 340 (12): 1925–1930. https://doi.org/10.1016/j.carres.2005.06.017.
61 61. Choudhary, V., Mushrif, S.H., Ho, C. et al. (2013). Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5‐(hydroxymethyl)furfural and levulinic acid in aqueous media. Journal of the American Chemical Society 135 (10): 3997–4006. https://doi.org/10.1021/ja3122763.
62 62. Filiciotto, L. (2019). Structural insights and valorization of humins: a catalytic approach. PhD thesis. Universidad de Córdoba.
63 63. Morales, G., Melero, J.A., Paniagua, M. et al. (2014). Sulfonic acid heterogeneous catalysts for dehydration of C6‐monosaccharides to 5‐hydroxymethylfurfural in dimethyl sulfoxide. Chinese Journal of Catalysis 35 (5): 644–655. https://doi.org/10.1016/s1872-2067(14)60020-6.
64 64. Dias, A.S., Pillinger, M., and Valente, A.A. (2005). Liquid phase dehydration of D‐xylose in the presence of Keggin‐type heteropolyacids. Applied Catalysis A: General 285 (1–2): 126–131. https://doi.org/10.1016/j.apcata.2005.02.016.
65 65. Soh, L. and Eckelman, M.J. (2016). Green solvents in biomass processing. ACS Sustainable Chemistry & Engineering 4 (11): 5821–5837. https://doi.org/10.1021/acssuschemeng.6b01635.
66 66. Yara‐Varón, E., Selka, A., Fabiano‐Tixier, A.S. et al. (2016). Solvent from forestry biomass. Pinane a stable terpene derived from pine tree byproducts to substitute n‐hexane for the extraction of bioactive compounds. Green Chemistry 18 (24): 6596–6608. https://doi.org/10.1039/c6gc02191c.
67 67. Diallo, A.O., Len, C., Morgan, A.B. et al. (2012). Revisiting physico–chemical hazards of ionic liquids. Separation and Purification Technology 97: 228–234. https://doi.org/10.1016/j.seppur.2012.02.016.
68 68. Menegazzo, F., Ghedini, E., and Signoretto, M. (2018). 5‐Hydroxymethylfurfural (HMF) production from real biomasses. Molecules 23 (9): 2201. https://doi.org/10.3390/molecules23092201.
69 69. Cicci, A., Sed, G., Jessop, P.G. et al. (2018). Circular extraction: an innovative use of switchable solvents for the biomass biorefinery. Green Chemistry 20 (17): 3908–3911. https://doi.org/10.1039/c8gc01731j.
70 70. Fu, D., Farag, S., Chaouki, J. et al. (2014). Extraction of phenols from lignin microwave‐pyrolysis oil using a switchable hydrophilicity solvent. Bioresource Technology 154: 101–108. https://doi.org/10.1016/j.biortech.2013.11.091.
71 71. Wang, C., Zhang, L., Zhou, T. et al. (2017). Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of carbohydrates and corncob acid hydrolysis residues to 5‐hydroxymethylfurfural. Scientific Reports 7 (1): 1,, Article ID 40908–9. https://doi.org/10.1038/srep40908.
72 72. Yu, I.K., Tsang, D.C., Yip, A.C. et al. (2016). Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps. Bioresource Technology 219: 338–347. https://doi.org/10.1016/j.biortech.2016.08.002.
73 73. Cai, C.M., Nagane, N., Kumar, R. et al. (2014). Coupling metal halides with a co‐solvent to produce furfural and 5‐HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chemistry 16 (8): 3819–3829. https://doi.org/10.1039/c4gc00747f.
74 74. Choudhary, V., Sandler, S.I., and Vlachos, D.G. (2012). Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media. ACS Catalysis 2 (9): 2022–2028. https://doi.org/10.1021/cs300265d.
75 75. Agbor, V.B., Cicek, N., Sparling, R. et al. (2011). Biomass pretreatment: fundamentals toward application. Biotechnology Advances 29 (6): 675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005.
76 76. Behera, S., Arora, R., Nandhagopal, N. et al. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 36: 91–106. https://doi.org/10.1016/j.rser.2014.04.047.
77 77. Kumar, A.K. and Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing 4 (1): 1–19, Article ID 7: doi: https://doi.org/10.1186/s40643-017-0137-9.
78 78. Den, W., Sharma, V.K., Lee, M. et al. (2018). Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value‐added chemicals. Frontiers in Chemistry 6: 1–23, Article ID 141. doi: https://doi.org/10.3389/fchem.2018.00141.
79 79. Satari, B., Karimi, K., and Kumar, R. (2019). Cellulose solvent‐based pretreatment for enhanced second‐generation biofuel production: a review. Sustainable Energy & Fuels 3 (1): 11–62. https://doi.org/10.1039/c8se00287h.
80 80. Mosier, N., Wyman, C., Dale, B. et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96 (6): 673–686. https://doi.org/10.1016/j.biortech.2004.06.025.
81 81. Wagner, A., Lackner, N., Mutschlechner, M. et al. (2018). Biological pretreatment strategies for second‐generation lignocellulosic resources to enhance biogas production. Energies 11 (7): 1797. https://doi.org/10.3390/en11071797.
82 82. Kucharska, K., Rybarczyk, P., Hołowacz, I. et al. (2018). Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23 (11): 2937. https://doi.org/10.3390/molecules23112937.
83 83. Hou, Q., Ju, M., Li, W. et al. (2017). Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid‐based solvent systems. Molecules 22 (3): 490. https://doi.org/10.3390/molecules22030490.
84 84. Kumar, G., Dharmaraja, J., Arvindnarayan, S. et al. (2019). A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio‐derived lignocellulosic molecules into renewable fuels. Fuel 251: 352–367. https://doi.org/10.1016/j.fuel.2019.04.049.
85 85. Basso, T.P. (2019). Emerging physiochemical methods for biomass pretreatment. In: Fuel Ethanol Production from Sugarcane (eds. T.P. Basso and L.C. Basso), 41–62. London: IntechOpen.
86 86. Alvira, P., Tomás‐Pejó, E., Ballesteros, M. et al. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology 101 (13): 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093.
87 87. Guragain, Y.N. and Vadlani, P.V. (2016). Importance of biomass‐specific pretreatment methods for effective and sustainable utilization of renewable resources. In: Biotechnology and Biochemical Engineering (eds. S. Gummadi and P. Vadlani), 207–215. Singapore: Springer.