Читать книгу Polysaccharides - Группа авторов - Страница 138

References

Оглавление

1. Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H., Essentials of glycobiology, third edition, Cold Spring Harbor Laboratory Press, New York, USA, 2017.

2. BeMiller, J.N. and BeMiller, J.N., Polysaccharides: Properties. Carbohydr. Chem. Food Sci., 2019.

3. BeMiller, J.N. and BeMiller, J.N., Polysaccharides: Occurrence, Structures, and Chemistry. Carbohydr. Chem. Food Sci., 2019.

4. Posocco, B., Dreussi, E., De Santa, J., Toffoli, G., Abrami, M., Musiani, F., Grassi, M., Farra, R., Tonon, F., Grassi, G., Dapas, B., Polysaccharides for the delivery of antitumor drugs. Materials (Basel), 8, 5, 2569–2615, 2015.

5. Niazi, S., Biosimilarity: The FDA perspective, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, USA, 2018.

6. Rigouin, C., Ladrat, C.D., Sinquin, C., Colliec-Jouault, S., Dion, M., Assessment of biochemical methods to detect enzymatic depolymerization of polysaccharides. Carbohydr. Polym., 76, 2, 279–284, 2009.

7. March, L. and Little, C., Articular Cartilage In Health And Disease, in: The Musculoskeletal System, 2010.

8. Schultz, C., Lipopolysaccharide, structure and biological effects. Gen. Intern. Med. Clin. Innov., 3, 1, 1–2, 2018.

9. Guo, M.Q., Hu, X., Wang, C., Ai, L., Polysaccharides: Structure and Solubility, in: Solubility of Polysaccharides, 2017.

10. Li, S., Xiong, Q., Lai, X., Li, X., Wan, M., Zhang, J., Yan, Y., Cao, M., Lu, L., Guan, J., Zhang, D., Lin, Y., Molecular Modification of Polysaccharides and Resulting Bioactivities. Compr. Rev. Food Sci. Food Saf., 15, 2, 237–250, 2016.

11. Ngwuluka, N.C., Responsive polysaccharides and polysaccharides-based nanoparticles for drug delivery, in: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1, 2018.

12. Malviya, R., Sharma, P.K., Dubey, S.K., Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents). Mater. Sci. Eng. C, 68, 929– 938, 2016.

13. Li, Q., Niu, Y., Xing, P., Wang, C., Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair. Chinese Med. (United Kingdom), 13, 7, 2018.

14. Vrana, N.E., Cell/Material Interface, in: Cell and Material Interface: Advances in Tissue Engineering, Biosensor, Implant, and Imaging Technologies, 2010.

15. Kasaai, M.R., A comparative study of molecular structure, solution properties and food application for three branched polysaccharides: Amylopectin, glycogen, and dextran. Curr. Trends Polym. Sci., 16, 49–63, 2012.

16. Thakur, V.K., Thakur, M.K., Handbook of Sustainable Polymers: Processing and applications. Pan Stanford Publishing; Singapore, 2016.

17. Bhagavan, N.V., Simple Carbohydrates, in: Medical Biochemistry, 2002.

18. Wu, G., Principles of Animal Nutrition, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, USA, 2017.

19. Cooper, G.M., The Cell, in: The Cell: A Molecular Approach, 2nd edition, 2000.

20. Berg, J., Tymoczko, J., Stryer, L., Complex Carbohydrates Are Formed by Linkage of Monosaccharides, Biochemistry, 5th edition, W. H. Freeman and Company, New York, USA, 2002.

21. Hui, Y.H., Culbertson, J.D., Duncan, S.E., Legarreta, I.G., Li-Chan, E.C.Y., Ma, C.Y., Manley, C., McMeekin, T., Nip, W.K., Nollet, L.M.L., Rahman, M.S., Toldrá, F., Xiong, Y.L., Handbook of Food Science, Technology, and Engineering, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, USA, 2005.

22. Eggleston, G. and Doyle, J.P., Polysaccharides: Molecules, clusters, networks, and interactions. ACS Symp. Ser., 2006.

23. Persin, Z., Stana-Kleinschek, K., Foster, T.J., Van Dam, J.E.G., Boeriu, C.G., Navard, P., Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr. Polym., 84, 1, 22–32, 2011.

24. Nie, S., Cui, S.W., Xie, M., Bioactive Polysaccharides, Elsevier, Academic Press, Cambridge, Massachusetts, USA, 2018.

25. Ullah, S., Khalil, A.A., Shaukat, F., Song, Y., Sources, Extraction and Biomedical Properties of Polysaccharides. Foods, 8, 8, 304, 1–23, 2019.

26. Chung, T.W., Choi, H.J., Kim, S.J., Kwak, C.H., Song, K.H., Jin, U.H., Chang, Y.C., Chang, H.W., Lee, Y.C., Ha, K.T., Kim, C.H., The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells. PLoS One, 9, 5, e92786, 2014.

27. Capuano, E., The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr., 57, 16, 3543–3564, 2017.

28. Slavin, J., Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5, 4, 1417–1435, 2013.

29. Jones, J.M., CODEX-aligned dietary fiber definitions help to bridge the “fiber gap”. Nutr. J., 13, 34, 2014.

30. Verma, A.K. and Banerjee, R., Dietary fibre as functional ingredient in meat products: A novel approach for healthy living—A review. J. Food Sci. Technol., 47, 3, 247–257, 2010.

31. Shimizu, H., Masujima, Y., Ushiroda, C., Mizushima, R., Taira, S., Ohue-Kitano, R., Kimura, I., Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Sci. Rep., 9, 16574, 2019.

32. Ahmadi, S., Mainali, R., Nagpal, R., Sheikh-Zeinoddin, M., Soleimanian-Zad, S., Wang, S., Deep, G., Kumar Mishra, S., and Yadav, H., Dietary Polysaccharides in the Amelioration of Gut Microbiome Dysbiosis and Metabolic Diseases. Obes. Control Ther., 4, 3, 10.15226/2374-8354/4/2/00140, 2017.

33. Lunn, J. and Buttriss, J.L., Carbohydrates and dietary fibre. Nutr. Bull., 32, 1, 21–64, 2007.

34. Holscher, H.D., Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8, 2, 172–184, 2017.

35. Chambers, E.S., Preston, T., Frost, G., Morrison, D.J., Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep., 7, 4, 198–206, 2018.

36. Baxter, N.T., Schmidt, A.W., Venkataraman, A., Kim, K.S., Waldron, C., Schmidt, T.M., Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio, 10, 1, e02566-18, 2019.

37. Silva, Y.P., Bernardi, A., Frozza, R.L., The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. (Lausanne), 11, 25, 2020.

38. Dalile, B., Van Oudenhove, L., Vervliet, B., Verbeke, K., The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol., 16, 8, 461–478, 2019.

39. Glowacki, J. and Mizuno, S., Collagen scaffolds for tissue engineering. Biopolymers, 89, 5, 338– 44, 2008.

40. Tiwari, S., Patil, R., Bahadur, P., Polysaccharide based scaffolds for soft tissue engineering applications. Polymers (Basel), 11, 1, 1, 2018.

41. Jay, S.M., Shepherd, B.R., Bertram, J.P., Pober, J.S., Saltzman, W.M., Engineering of multifunctional gels integrating highly efficient growth factor delivery with endothelial cell transplantation. FASEB J., 22, 8, 2949–56, 2008.

42. Wang, D.A., Varghese, S., Sharma, B., Strehin, I., Fermanian, S., Gorham, J., Fairbrother, D.H., Cascio, B., Elisseeff, J.H., Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat. Mater., 6, 5, 385–92, 2007.

43. Feng, Z., Kerm, S.C., Wey, F.O., Mhaisalka, P.S., Chan, V., Ratner, B.D., Dual requirements of extracellular matrix protein and chitosan for inducing adhesion contact evolution of esophageal epithelia. J. Biomed. Mater. Res.—Part A, 82, 4, 788–801, 2007.

44. Kogan, G., Šoltés, L., Stern, R., Gemeiner, P., Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett., 29, 1, 17–25, 2007.

45. Sun, J. and Tan, H., Alginate-based biomaterials for regenerative medicine applications. Materials (Basel), 6, 4, 1285–1309, 2013.

46. Hickey, R.J., Modulevsky, D.J., Cuerrier, C.M., Pelling, A.E., Customizing the Shape and Microenvironment Biochemistry of Biocompatible Macroscopic Plant-Derived Cellulose Scaffolds. ACS Biomater. Sci. Eng., 4, 11, 3726–3736, 2018.

47. Lee, J., Jung, H., Park, N., Park, S.H., Ju, J.H., Induced Osteogenesis in Plants Decellularized Scaffolds. Sci. Rep., 9, 1, 20194, 2019.

48. Courtenay, J.C., Sharma, R.I., Scott, J.L., Recent advances in modified cellulose for tissue culture applications. Molecules, 23, 3, 654, 2018.

49. Hickey, R.J. and Pelling, A.E., Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol., 7, 45, 2019.

50. Märtson, M., Viljanto, J., Hurme, T., Laippala, P., Saukko, P., Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials, 20, 21, 1989–95, 1999.

51. Novotna, K., Havelka, P., Sopuch, T., Kolarova, K., Vosmanska, V., Lisa, V., Svorcik, V., Bacakova, L., Cellulose-based materials as scaffolds for tissue engineering. Cellulose, 20, 2263–227, 2013.

52. Haney, A.F. and Doty, E., Comparison of the peritoneal cells elicited by oxidized regenerated cellulose (Interceed) and expanded polytetrafluoroethylene (Gore-Tex Surgical Membrane) in a murine model. Am. J. Obstet. Gynecol., 166, 4, 1137–46, 1992.

53. Costa, A.F.S., Almeida, F.C.G., Vinhas, G.M., Sarubbo, L.A., Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front. Microbiol., 8, 2027, 2017.

54. Torgbo, S. and Sukyai, P., Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl. Mater. Today, 11, 34–49, 2018.

55. Gorgieva, S. and Trček, J., Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials, 9, 10, 1352, 2019.

56. Portela, R., Leal, C.R., Almeida, P.L., Sobral, R.G., Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb. Biotechnol., 12, 4, 586–610, 2019.

57. Torres, F., Commeaux, S., Troncoso, O., Biocompatibility of Bacterial Cellulose Based Biomaterials. J. Funct. Biomater., 3, 4, 864–878, 2012.

58. Jia, Y., Zhu, W., Zheng, M., Huo, M., Zhong, C., Bacterial cellulose/hyaluronic acid composite hydrogels with improved viscoelastic properties and good thermodynamic stability. Plast. Rubber Compos., 47, 4, 165–175, 2018.

59. Nair, L.S. and Laurencin, C.T., Biodegradable polymers as biomaterials. Prog. Polym. Sci., 32, 8-9, 762–798, 2007.

60. Li, J., Wan, Y., Li, L., Liang, H., Wang, J., Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C, 29, 5, 1635–1642, 2009.

61. Luo, H., Xiong, G., Hu, D., Ren, K., Yao, F., Zhu, Y., Gao, C., Wan, Y., Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater. Chem. Phys., 143, 1, 373–379, 2013.

62. Yadav, V., Paniliatis, B.J., Shi, H., Lee, K., Cebe, P., Kaplan, D.L., Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl. Environ. Microbiol., 76, 18, 6257–65, 2010.

63. Afewerki, S., Sheikhi, A., Kannan, S., Ahadian, S., Khademhosseini, A., Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng. Transl. Med., 41, 1, 96–115, 2019.

64. Dong, Z., Yuan, Q., Huang, K., Xu, W., Liu, G., Gu, Z., Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv., 9, 17737–17744, 2019.

65. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 6, 2, 105–21, 2015.

66. Zhai, P., Peng, X., Li, B., Liu, Y., Sun, H., Li, X., The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol., 151, 1224–1239, 2019.

67. Menaa, F., Menaa, A., Menaa, B., Hyaluronic Acid and Derivatives for Tissue Engineering. J. Biotechnol. Biomater., S3, 001, 2011.

68. Rayahin, J.E., Buhrman, J.S., Zhang, Y., Koh, T.J., Gemeinhart, R.A., High and Low Molecular Weight Hyaluronic Acid Differentially Influence Macrophage Activation. ACS Biomater. Sci. Eng., 1, 7, 481–493, 2015.

69. Campo, G.M., Avenoso, A., Campo, S., D’Ascola, A., Nastasi, G., Calatroni, A., Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes. Biochimie, 92, 2, 204–15, 2010.

70. Chircov, C. and Grumezescu, A.M., Bejenaru, L.E., Hyaluronic acid-based scaffolds for tissue engineering. Rom. J. Morphol. Embryol., 59, 1, 71–76, 2018.

71. Zanchetta, P., Lagarde, N., Uguen, A., Marcorelles, P., Mixture of hyaluronic acid, chondroitin 6 sulphate and dermatan sulphate used to completely regenerate bone in rat critical size defect model. J. Cranio-Maxill. Surg., 40, 8, 783–7, 2012.

72. Özgenel, G.Y., Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats. Microsurgery, 23, 6, 575–81, 2003.

73. Lin, C.M., Lin, J.W., Chen, Y.C., Shen, H.H., Wei, L., Yeh, Y.S., Chiang, Y.H., Shih, R., Chiu, P.L., Hung, K.S., Yang, L.Y., Chiu, W.T., Hyaluronic acid inhibits the glial scar formation after brain damage with tissue loss in rats. Surg. Neurol., 72 Suppl 2, S50-4, 2009.

74. Seidlits, S.K., Khaing, Z.Z., Petersen, R.R., Nickels, J.D., Vanscoy, J.E., Shear, J.B., Schmidt, C.E., The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials, 31, 14, 3930–3940, 2010.

75. Bajpai, S.K. and Sharma, S., Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym., 59, 2, 129–140, 2004.

76. Sarker, B., Singh, R., Silva, R., Roether, J.A., Kaschta, J., Detsch, R., Schubert, D.W., Cicha, I., Boccaccini, A.R., Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One, 9, 9, e107952, 2014.

77. Kong, H.J., Smith, M.K., Mooney, D.J., Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials, 24, 22, 4023–9, 2003.

78. Shachar, M., Tsur-Gang, O., Dvir, T., Leor, J., Cohen, S., The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater., 7, 1, 152–62, 2011.

79. Al-Shamkhani, A. and Duncan, R., Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J. Bioact. Compat. Polym., 10, 1, 4–13, 1995.

80. Bouhadir, K.H., Lee, K.Y., Alsberg, E., Damm, K.L., Anderson, K.W., Mooney, D.J., Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog., 17, 5, 945–50, 2001.

81. Mokhtarzadeh, A., Alibakhshi, A., Hejazi, M., Omidi, Y., Ezzati Nazhad Dolatabadi, J., Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. TrAC—Trend. Anal. Chem., 82, 367–384, 2016.

82. Sharma, R. and Sharma, C.L., Macromolecular drugs: Novel strategy in target specific drug delivery. J. Clin. Diagn. Res., 2, 4, 1020, 2008.

83. Noel, S., Fortier, C., Murschel, F., Belzil, A., Gaudet, G., Jolicoeur, M., De Crescenzo, G., Co-immobilization of adhesive peptides and VEGF within a dextran-based coating for vascular applications. Acta Biomater., 37, 69–82, 2016.

84. Sun, G., Shen, Y.I., Kusuma, S., Fox-Talbot, K., Steenbergen, C.J., Gerecht, S., Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials, 32, 1, 95–106, 2011.

85. Bajaj, I.B., Survase, S.A., Saudagar, P.S., Singhal, R.S., Gellan gum: Fermentative production, downstream processing and applications. Food Technol. Biotechnol., 45, 4, 341–354, 2007.

86. Prajapati, V.D., Jani, G.K., Zala, B.S., Khutliwala, T.A., An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr. Polym., 93, 2, 670–8, 2013.

87. Silva, N.A., Cooke, M.J., Tam, R.Y., Sousa, N., Salgado, A.J., Reis, R.L., Shoichet, M.S., The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/ progenitor cell fate. Biomaterials, 33, 27, 6345–54, 2012.

88. Oliveira, J.T., Santos, T.C., Martins, L., Silva, M.A., Marques, A.P., Castro, A.G., Neves, N.M., Reis, R.L., Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. J. Tissue Eng. Regen. Med., 3, 7, 493–500, 2009.

89. Oliveira, J.T., Gardel, L.S., Rada, T., Martins, L., Gomes, M.E., Reis, R.L., Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects. J. Orthop. Res., 28, 9, 1193–9, 2010.

90. Silva-Correia, J., Oliveira, J.M., Caridade, S.G., Oliveira, J.T., Sousa, R.A., Mano, J.F., Reis, R.L., Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J. Tissue Eng. Regen. Med., 5, 6, e97–107, 2011.

91. Smith, L.J., Nerurkar, N.L., Choi, K.S., Harfe, B.D., Elliott, D.M., Degeneration and regeneration of the intervertebral disc: Lessons from development. DMM Dis. Model. Mech., 4, 1, 31–41, 2011.

92. Bacelar, A.H., Silva-Correia, J., Oliveira, J.M., Reis, R.L., Recent progress in gellan gum hydrogels provided by functionalization strategies. J. Mater. Chem. B, 4, 37, 6164–6174, 2016.

93. Mohan, T., Maver, T., Štiglic, A.D., Stana-Kleinschek, K., Kargl, R., 3D bioprinting of polysaccharides and their derivatives: From characterization to application, in: Fundamental Biomaterials: Polymers, 2018.

94. Yanagawa, F., Sugiura, S., Kanamori, T., Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen. Ther., 3, 45–57, 2016.

95. Hong, N., Yang, G.H., Lee, J.H., Kim, G.H., 3D bioprinting and its in vivo applications. J. Biomed. Mater. Res.—Part B Appl. Biomater., 106, 1, 444–459, 2018.

96. Murphy, S.V. and Atala, A., 3D bioprinting of tissues and organs. Nat. Biotechnol., 32, 8, 773–85, 2014.

97. Percival, N.J., Classification of Wounds and their Management. Surg., 20, 5, 114–117, 2002.

98. Kirker, K.R., Luo, Y., Nielson, J.H., Shelby, J., Prestwich, G.D., Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials, 23, 17, 3661–71, 2002.

99. Cherng, J.-H., The Strategies of Natural Polysaccharide in Wound Healing, in: Wound Healing— Current Perspectives, 2019.

100. Yin, M., Zhang, Y., Li, H., Advances in research on immunoregulation of macrophages by plant polysaccharides. Front. Immunol., 10, 145, 2019.

101. Aduba, D.C. and Yang, H., Polysaccharide fabrication platforms and biocompatibility assessment as candidate wound dressing materials. Bioengineering, 4, 1, 1, 2017.

102. Weiser, J.N., Roche, A.M., Hergott, C.B., LaRose, M.I., Connolly, T., Jorgensen, W.L., Leng, L., Bucala, R., Das, R., Macrophage Migration Inhibitory Factor Is Detrimental in Pneumococcal Pneumonia and a Target for Therapeutic Immunomodulation. J. Infect. Dis., 212, 10, 1667–82, 2015.

103. Schepetkin, I.A. and Quinn, M.T., Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol., 6, 3, 317–33, 2006.

104. Sun, L. and Zhao, Y., The biological role of dectin-1 in immune response. Int. Rev. Immunol., 26, 5–6, 349–64, 2007.

105. Martins, P.R., de Campos Soares, Â.M.V., da Silva Pinto Domeneghini, A.V., Golim, M.A., Kaneno, R., Agaricus brasiliensis polysaccharides stimulate human monocytes to capture Candida albicans, express toll-like receptors 2 and 4, and produce pro-inflammatory cytokines. J. Venom. Anim. Toxins Incl. Trop. Dis., 23, 17, 2017.

106. Dockery, G.D. and Crawford, M.E., Lower Extremity Soft Tissue & Cutaneous Plastic Surgery, Second edition, W.B. Saunders Co Ltd, England, 2012.

107. Aderibigbe, B.A. and Buyana, B., Alginate in wound dressings. Pharmaceutics, 10, 2, 42, 2018.

108. Farrar, D., Advanced wound repair therapies, Elsevier Science & Technology, Woodhead Publishing Ltd, Cambridge, United Kingdom, 2011.

109. Wang, C.H., Chang, S.J., Tzeng, Y.S., Shih, Y.J., Adrienne, C., Chen, S.G., Chen, T.M., Dai, N.T., Cherng, J.H., Enhanced wound-healing performance of a phyto-polysaccharide-enriched dressing—A preclinical small and large animal study. Int. Wound J., 14, 6, 1359–1369, 2017.

110. Eaglstein, W.H., Moist wound healing with occlusive dressings: A clinical focus. Dermatol. Surg., 27, 2, 175–81, 2001.

111. Paul, W. and Sharma, C.P., Chitosan and Alginate Wound Dressings: A Short Review. Trends Biomater. Artif. Organs, 18, 1, 18–23, 2004.

112. Xing, N., Tian, F., Yang, J., Li, Y., II.Characterizations of alginate-chitosan hydrogel for wound dressing application. Adv. Mater. Res., 490–495, 3124–3128, 2012.

113. Devi, M.P., Sekar, M., Chamundeswari, M., Moorthy, A., Krithiga, G., Murugan, N.S., Sastry, T.P., A novel wound dressing material—Fibrin–chitosan–sodium alginate composite sheet. Bull. Mater. Sci., 35, 1157–1163, 2012.

114. Madgulkar, A.R., Rao, M.R.P., Warrier, D., Characterization of psyllium (Plantago ovata) polysaccharide and its uses, in: Polysaccharides: Bioactivity and Biotechnology, 2015.

115. Westerhof, W., Das, P.K., Middelkoop, E., Verschoor, J., Storey, L., Regnier, C., Mucopolysaccharides from psyllium involved in wound healing. Drugs Exp. Clin. Res., 27, 5–6, 165–75, 2001.

116. Patil, B.S., Mastiholimath, V.S., Kulkarni, A.R., Development and evaluation of psyllium seed husk polysaccharide based wound dressing films. Orient. Pharm. Exp. Med., 11, 2, 123–129, 2011.

117. Fernandes, C., Acharya, P.C., Bhatt, S., Preparation of Lauroyl Grafted Alginate-Psyllium Husk Gel Composite Film with Enhanced Physicochemical, Mechanical and Antimicrobial Properties. Sci. Rep., 8, 1, 17213, 2018.

118. Ponrasu, T., Veerasubramanian, P.K., Kannan, R., Gopika, S., Suguna, L., Muthuvijayan, V., Morin incorporated polysaccharide-protein (psyllium-keratin) hydrogel scaffolds accelerate diabetic wound healing in Wistar rats. RSC Adv., 8, 2305–14, 2018.

119. Rahman, M.M. and Netravali, A.N., Aligned Bacterial Cellulose Arrays as “green” Nanofibers for Composite Materials. ACS Macro Lett., 5, 9, 1070, 2016.

120. Liu, M., Li, S., Xie, Y., Jia, S., Hou, Y., Zou, Y., Zhong, C., Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Appl. Microbiol. Biotechnol., 102, 3, 1155–1165, 2018.

121. Aboelnaga, A., Elmasry, M., Adly, O.A., Elbadawy, M.A., Abbas, A.H., Abdelrahman, I., Salah, O., Steinvall, I., Microbial cellulose dressing compared with silver sulphadiazine for the treatment of partial thickness burns: A prospective, randomised, clinical trial. Burns, 44, 8, 1982– 1988, 2018.

122. Grassi, M., Grassi, G., Lapasin, R., Colombo, I., Understanding drug release and absorption mechanisms: A physical and mathematical approach, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, USA, 2006.

123. Ganguly, K., Chaturvedi, K., More, U.A., Nadagouda, M.N., Aminabhavi, T.M., Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J. Control. Release, 193, 162–73, 2014.

124. Zhu, T., Mao, J., Cheng, Y., Liu, H., Lv, L., Ge, M., Li, S., Huang, J., Chen, Z., Li, H., Yang, L., Lai, Y., Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv. Mater. Interfaces, 6, 17, 1900761, 2019.

125. Gopinath, V., Saravanan, S., Al-Maleki, A.R., Ramesh, M., Vadivelu, J., A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother., 107, 96–108, 2018.

126. Wang, H., He, J., Zhang, M., Tam, K.C., Ni, P., A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym. Chem., 6, 4206–4209, 2015.

127. Auzenne, E., Ghosh, S.C., Khodadadian, M., Rivera, B., Farquhar, D., Price, R.E., Ravoori, M., Kundra, V., Freedman, R.S., Klostergaard, J., Hyaluronic acid-paclitaxel: Antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia, 9, 6, 479–486, 2007.

128. Giannuzzo, M., Feeney, M., Paolicelli, P., Casadei, M.A., Synthesis and characterization of pH-sensitive hydrogels of dextran. J. Drug Deliv. Sci. Technol., 16, 1, 49–54, 2006.

129. Milivojevic, M., Pajic-Lijakovic, I., Bugarski, B., Nayak, A.K., Hasnain, M.S., Gellan gum in drug delivery applications, in: Natural Polysaccharides in Drug Delivery and Biomedical Applications, 2019.

130. D’Arrigo, G., Di Meo, C., Gaucci, E., Chichiarelli, S., Coviello, T., Capitani, D., Alhaique, F., Matricardi, P., Self-assembled gellan-based nanohydrogels as a tool for prednisolone delivery. Soft Matter, 8, 45, 11557–11564, 2012.

131. Singhvi, G., Hans, N., Shiva, N., Kumar Dubey, S., Xanthan gum in drug delivery applications, in: Natural Polysaccharides in Drug Delivery and Biomedical Applications, 2019.

132. Boudoukhani, M., Yahoum, M.M., Lefnaoui, S., Moulai-Mostefa, N., Banhobre, M., Synthesis, characterization and evaluation of deacetylated xanthan derivatives as new excipients in the formulation of chitosan-based polyelectrolytes for the sustained release of tramadol. Saudi Pharm. J., 27, 8, 1127–1137, 2019.

133. Baimark, Y. and Srisuwan, Y., Preparation of polysaccharide-based microspheres by a water-inoil emulsion solvent diffusion method for drug carriers. Int. J. Polym. Sci., 2013, 6, 2013.

134. Wang, W., Liu, X., Xie, Y., Zhang, H., Yu, W., Xiong, Y., Xie, W., Ma, X., Microencapsulation using natural polysaccharides for drug delivery and cell implantation. J. Mater. Chem., 16, 3252–3267, 2006.

135. Saravanakumar, G., Jo, D.-G., Park, J.H., Polysaccharide-Based Nanoparticles: A Versatile Platform for Drug Delivery and Biomedical Imaging. Curr. Med. Chem., 19, 19, 3212–29, 2012.

136. Shen, H.Y., Li, L.Z., Xue, K.C., Hu, D.D., Gao, Y.J., Antitumor activity of fucoidan in anaplastic thyroid cancer via apoptosis and anti-angiogenesis. Mol. Med. Rep., 15, 5, 2620–2624, 2017.

137. Chen, S., Zhao, Y., Zhang, Y., Zhang, D., Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades. PLoS One, 9, 9, e108157, 2014.

138. Venkatesan, J., Anil, S., Kim, S.K., Shim, M.S., Seaweed polysaccharide-based nanoparticles: Preparation and applications for drug delivery. Polymers (Basel), 8, 2, 30, 2016.

139. Huang, Y.C. and Lam, U.I., Chitosan/fucoidan pH sensitive nanoparticles for oral delivery system. J. Chin. Chem. Soc., 58, 6, 779–785, 2011.

140. Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M.C., Dilbaghi, N., Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym., 101, 1061–7, 2014.

141. Campos, E.V.R., de Oliveira, J.L., Fraceto, L.F., Singh, B., Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev., 35, 1, 47–66, 2014.

142. Habiba, S.U., Shimasaki, K., Ahasan, M.M., Uddin, A.F.M.J., Effect of two bio polysaccharides on organogenesis of PLBs in Dendrobium kingianum cultured in vitro. Acta Hortic., 1167, 127– 132, 2017.

143. Fliervoet, L.A.L., Engbersen, J.F.J., Schiffelers, R.M., Hennink, W.E., Vermonden, T., Polymers and hydrogels for local nucleic acid delivery. J. Mater. Chem. B, 6, 5651–5670, 2018.

144. Raemdonck, K., Martens, T.F., Braeckmans, K., Demeester, J., De Smedt, S.C., Polysaccharide-based nucleic acid nanoformulations. Adv. Drug Deliv. Rev., 65, 9, 1123–47, 2013.

145. Mizrahy, S. and Peer, D., Polysaccharides as building blocks for nanotherapeutics. Chem. Soc. Rev., 41, 2623–2640, 2012.

146. Zhang, H., Ma, Y., Sun, X.L., Recent developments in carbohydrate-decorated targeted drug/ gene delivery. Med. Res. Rev., 30, 2, 270–289, 2010.

147. Lesley, J., Hascall, V.C., Tammi, M., Hyman, R., Hyaluronan binding by cell surface CD44. J. Biol. Chem., 275, 35, 26967–75, 2000.

148. Park, I.K., Kim, T.H., Park, Y.H., Shin, B.A., Choi, E.S., Chowdhury, E.H., Akaike, T., Cho, C.S., Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. J. Control. Release, 76, 3, 349–62, 2001.

149. Thanou, M., Florea, B.I., Geldof, M., Junginger, H.E., Borchard, G., Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials, 23, 1, 153–9, 2002.

150. Serrano-Sevilla, I., Artiga, Á., Mitchell, S.G., De Matteis, L., de la Fuente, J.M., Natural polysaccharides for siRNA delivery: Nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules, 24, 14, 2570, 2019.

151. Chen, C.J., Zhao, Z.X., Wang, J.C., Zhao, E.Y., Gao, L.Y., Zhou, S.F., Liu, X.Y., Lu, W.L., Zhang, Q., A comparative study of three ternary complexes prepared in different mixing orders of siRNA/ redox-responsive hyperbranched poly (amido amine)/hyaluronic acid. Int. J. Nanomedicine, 7, 3837–3849, 2012.

152. Yin, T., Liu, J., Zhao, Z., Dong, L., Cai, H., Yin, L., Zhou, J., Huo, M., Smart nanoparticles with a detachable outer shell for maximized synergistic antitumor efficacy of therapeutics with varying physicochemical properties. J. Control. Release, 243, 54–68, 2016.

153. Musgrave, C.S.A. and Fang, F., Contact lens materials: A materials science perspective. Materials (Basel), 12, 2, 261, 2019.

154. Carvalho, I.M., Marques, C.S., Oliveira, R.S., Coelho, P.B., Costa, P.C., Ferreira, D.C., Sustained drug release by contact lenses for glaucoma treatment—A review. J. Control. Release, 202, 76–82, 2015.

155. Xu, J., Xue, Y., Hu, G., Lin, T., Gou, J., Yin, T., He, H., Zhang, Y., Tang, X., A comprehensive review on contact lens for ophthalmic drug delivery. J. Control. Release, 281, 97–118, 2018.

156. Shi, X.Y. and Tan, T.W., New contact lens based on chitosan/gelatin composites. J. Bioact. Compat. Polym., 19, 6, 467–479, 2004.

157. Maulvi, F.A., Soni, T.G., Shah, D.O., A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv., 23, 8, 3017–3026, 2016.

158. Banerjee, S., Parasramka, M., Paruthy, S.B., Polysaccharides in cancer prevention: From bench to bedside, in: Polysaccharides: Bioactivity and Biotechnology, 2015.

159. Figueroa, F.L., Korbee, N., Abdala-Díaz, R., Álvarez-Gómez, F., Gómez-Pinchetti, J.L., Acién, F.G., Growing algal biomass using wastes, in: Bioassays: Advanced Methods and Applications, 2018.

160. Casu, B., Structure and active domains of heparin, in: Chemistry and Biology of Heparin and Heparan Sulfate, 2005.

161. Zhao, X. and Courtney, J.M., Surface modification of biomaterials by heparinisation to improve blood compatibility, in: Surface Modification of Biomaterials: Methods Analysis and Applications, 2011.

162. Mishra, S., Upadhaya, K., Mishra, K.B., Shukla, A.K., Tripathi, R.P., Tiwari, V.K., Carbohydrate-Based Therapeutics: A Frontier in Drug Discovery and Development, in: Studies in Natural Products Chemistry, 2016.

163. Liu, Z., Ji, S., Sheng, J., Wang, F., Pharmacological effects and clinical applications of ultra low molecular weight heparins. Drug Discov. Ther., 8, 1, 1–10, 2014.

164. Mulloy, B., Hogwood, J., Gray, E., Lever, R., Page, C.P., Pharmacology of Heparin and Related Drugs. Pharmacol. Rev., 68, 1, 76–141, 2015.

165. Dicker, K.T., Gurski, L.A., Pradhan-Bhatt, S., Witt, R.L., Farach-Carson, M.C., Jia, X., Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater., 10, 4, 1558–70, 2014.

166. Monheit, G.D., Hyaluronic Acid Fillers: Hylaform and Captique. Facial Plast. Surg. Clin. North Am., 15, 1, 77–84, 2007.

167. Bitterman-Deutsch, O., Kogan, L., Nasser, F., Delayed immune mediated adverse effects to hyaluronic acid fillers: Report of five cases and review of the literature. Dermatol. Reports, 7, 1, 5851, 2015.

168. Gonçalves Maia Campos, P.M.B., De Melo, M.O., de Camargo Junior, F.B., Effects of polysaccharide-based formulations on human skin, in: Polysaccharides: Bioactivity and Biotechnology.

169. Kanlayavattanakul, M. and Lourith, N., Biopolysaccharides for skin hydrating cosmetics, in: Polysaccharides: Bioactivity and Biotechnology, 2015.

170. Lautenschläger, H., (Poly)Saccharides in cosmetic products—From alginate to xanthan gum. Kosmet. Prax., 4, 12–15, 2009.

171. Pitkänen, L., Heinonen, M., Mikkonen, K.S., Safety considerations of plant polysaccharides for food use: A case study on Phenolic-rich softwood galactoglucomannan extract. Food Funct., 9, 1931–1943, 2018.

172. Sethy, K., Mishra, S.K., Mohanty, P.P., Agarawal, J., Meher, P., Satapathy, D., Sahoo, J.K., Panda, S., Nayak, S.M., An overview of Non Starch Polysaccharide. J. Anim. Nutr. Physiol., 1, 17–22, 2015.

173. Arnling Bååth, J., Martínez-Abad, A., Berglund, J., Larsbrink, J., Vilaplana, F., Olsson, L., Mannanase hydrolysis of spruce galactoglucomannan focusing on the influence of acetylation on enzymatic mannan degradation. Biotechnol. Biofuels, 11, 114, 2018.

174. Dourado, F., Leal, M., Martins, D., Fontão, A., Cristina Rodrigues, A., Gama, M., Celluloses as Food Ingredients/Additives: Is There a Room for BNC?, in: Bacterial Nanocellulose: From Biotechnology to Bio-Economy, 2016.

175. Scheller, H.V. and Ulvskov, P., Hemicelluloses. Annu. Rev. Plant Biol., 61, 263–89, 2010.

176. Berglund, J., Azhar, S., Lawoko, M., Lindström, M., Vilaplana, F., Wohlert, J., Henriksson, G., The structure of galactoglucomannan impacts the degradation under alkaline conditions. Cellulose, 26, 2155–2175, 2019.

177. Bhattarai, M., Pitkänen, L., Kitunen, V., Korpinen, R., Ilvesniemi, H., Kilpeläinen, P.O., Lehtonen, M., Mikkonen, K.S., Functionality of spruce galactoglucomannans in oil-in-water emulsions. Food Hydrocoll., 86, 154–161, 2019.

178. Rosa-Sibakov, N., Hakala, T.K., Sözer, N., Nordlund, E., Poutanen, K., Aura, A.M., Birch pulp xylan works as a food hydrocolloid in acid milk gels and is fermented slowly in vitro. Carbohydr. Polym., 154, 305–312, 2016.

179. Jindal, N. and Singh Khattar, J., Microbial Polysaccharides in Food Industry, in: Biopolymers for Food Design, 2018.

180. Ahmad, N.H., Mustafa, S., Man, Y.B.C., Microbial polysaccharides and their modification approaches: A review. Int. J. Food Prop., 18, 2, 332–347, 2015.

181. Banik, R.M. and Santhiagu, A., Improvement in production and quality of gellan gum by Sphingomonas paucimobilis under high dissolved oxygen tension levels. Biotechnol. Lett., 28, 17, 1347–50, 2006.

182. Kothari, D., Das, D., Patel, S., Goyal, A., Dextran and food application, in: Polysaccharides: Bioactivity and Biotechnology, 2015.

183. Brownlee, I.A., Allen, A., Pearson, J.P., Dettmar, P.W., Havler, M.E., Atherton, M.R., Onsøyen, E., Alginate as a source of dietary fiber. Crit. Rev. Food Sci. Nutr., 45, 6, 497–510, 2005.

184. Eliaz, I., Weil, E., Wilk, B., Integrative medicine and the role of modified citrus pectin/alginates in heavy metal chelation and detoxification—Five case reports. Forsch. Komplementarmed., 14, 6, 358–64, 2007.

185. Sears, M.E., Chelation: Harnessing and enhancing heavy metal detoxification—A review. Sci. World J., 2013, 219840, 2013.

186. Coma, V., Polysaccharide-based biomaterials with antimicrobial and antioxidant properties. Polimeros, 23, 287–297, 2013.

187. M., R. and Mosqueda-Melgar, J., Polysaccharides as Carriers and Protectors of Additives and Bioactive Compounds in Foods, in: The Complex World of Polysaccharides, 2012.

188. Ozdemir, M. and Floros, J.D., Active food packaging technologies. Crit. Rev. Food Sci. Nutr., 44, 3, 185–93, 2004.

189. Yildirim, S., Röcker, B., Pettersen, M.K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., Coma, V., Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf., 17, 1, 165–199, 2018.

190. Hebbale, D., Bhargavi, R., Ramachandra, T.V., Saccharification of macroalgal polysaccharides through prioritized cellulase producing bacteria. Heliyon, 5, 3, e01372, 2019.

191. A., E., Biofuel: Sources, Extraction and Determination, in: Liquid, Gaseous and Solid Biofuels— Conversion Techniques, 2013.

192. Shrotri, A., Kobayashi, H., Fukuoka, A., Catalytic Conversion of Structural Carbohydrates and Lignin to Chemicals, in: Advances in Catalysis, 2017.

193. Tan, H.T., Corbin, K.R., Fincher, G.B., Emerging technologies for the production of renewable liquid transport fuels from biomass sources enriched in plant cell walls. Front. Plant Sci., 7, 1854, 2016.

194. Passoth, V. and Sandgren, M., Biofuel production from straw hydrolysates: Current achievements and perspectives. Appl. Microbiol. Biotechnol., 103, 5105–511, 2019.

195. Lakatos, G.E., Ranglová, K., Manoel, J.C., Grivalský, T., Kopecký, J., Masojídek, J., Bioethanol production from microalgae polysaccharides. Folia Microbiol. (Praha), 64, 5, 627–644, 2019.

196. Sticklen, M.B., Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nat. Rev. Genet., 9, 6, 433–43, 2008.

197. Furtado, A., Lupoi, J.S., Hoang, N.V., Healey, A., Singh, S., Simmons, B.A., Henry, R.J., Modifying plants for biofuel and biomaterial production. Plant Biotechnol. J., 12, 9, 1246–58, 2014.

198. Thornbury, M., Sicheri, J., Slaine, P., Getz, L.J., Finlayson-Trick, E., Cook, J., Guinard, C., Boudreau, N., Jakeman, D., Rohde, J., McCormick, C., Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics. PLoS One, 14, 1, e0209221, 2019.

199. Tsegaye, B., Balomajumder, C., Roy, P., Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: An overview and future prospect. Bull. Natl. Res. Cent., 43, 51, 2019.

200. Nechita, P., Applications of Chitosan in Wastewater Treatment, in: Biological Activities and Application of Marine Polysaccharides, 2017.

201. Morone, A., Mulay, P., Kamble, S.P., Removal of pharmaceutical and personal care products from wastewater using advanced materials, in: Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, 2019.

202. Lessa, E.F., Medina, A.L., Ribeiro, A.S., Fajardo, A.R., Removal of multi-metals from water using reusable pectin/cellulose microfibers composite beads. Arab. J. Chem., 13, 1, 709–720, 2020.

203. Elbedwehy, A.M., Abou-Elanwar, A.M., Ezzat, A.O., Atta, A.M., Super effective removal of toxic metals water pollutants using multi functionalized polyacrylonitrile and Arabic gum grafts. Polymers (Basel), 11, 12, 1938, 2019.

204. Crini, G., Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci., 30, 1, 38–70, 2005.

205. Enescu, D., Use of chitosan in surface modification of textile materials. Rom. Biotechnol. Lett., 13, 4037–4048, 2008.

206. Dastjerdi, R. and Montazer, M., A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B Biointerfaces, 79, 1, 5–18, 2010.

207. Chatterjee, S., Salaün, F., Campagne, C., Development of multilayer microcapsules by a phase coacervation method based on ionic interactions for textile applications. Pharmaceutics, 6, 2, 281–97, 2014.

208. Roy, J., Salaün, F., Giraud, S., Ferri, A., Guan, J., Chitosan-Based Sustainable Textile Technology: Process, Mechanism, Innovation, and Safety, in: Biological Activities and Application of Marine Polysaccharides, 2017.

209. Alonso, D., Gimeno, M., Olayo, R., Vázquez-Torres, H., Sepúlveda-Sánchez, J.D., Shirai, K., Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr. Polym., 77, 3, 536–543, 2009.

210. Fei, B. and Xin, J.H., N, N-diethyl-m-toluamide-containing microcapsules for bio-cloth finishing. Am. J. Trop. Med. Hyg., 77, 1, 52–57, 2007.

211. Jocic, D., Smart Textile Materials by Surface Modification with Biopolymeric Systems. Res. J. Text. Appar., 12, 58–65, 2008.

212. Madhu, C.R. and Patel, M.C., Reactive Dye Printing on Cotton with Natural and Synthetic Thickeners. Int. Res. J. Eng. Technol., 3, 3, 1418, 2016.

Email: sinem.tuncer@bilecik.edu.tr

Polysaccharides

Подняться наверх