Читать книгу Processing of Ceramics - Группа авторов - Страница 29

References

Оглавление

1 1 Ikesue, A., Kinoshita, T., Kamata, K., and Yoshida, K. (1995). Fabrication and optical properties of high‐performance polycrystalline Nd:YAG ceramics for solid‐state lasers. J. Am. Ceram. Soc. 78 (4): 1033–1040.

2 2 Matsui, K. (2010). Phase‐transformation mechanism in yttria‐stabilized tetragonal zirconia polycrystal: discovery of grain boundary segregation‐induced phase transformation. TOSOH Res. Technol. Rev. 54: 3–15.

3 3 Haneda, H., Yanagitani, T., Watanabe, A., and Shirasaki, S. (1990). Preparation of ytterbium iron garnet powder by homogeneous preparation method and its sintering. J. Cerma. Soc. Jpn. 98 (3): 285–291.

4 4 Sarthou, J., Aball, P., Patriarche, G. et al. (2016). Wet‐route synthesis and characterization of Yb:CaF2 optical ceramics. J. Am. Ceram. Soc.: 1–9. https://doi.org/10.1111/jace.14216.

5 5 Pawlowski, E., Klugel, M., Menke, Y. et al. (2010). Proc. SPIE Photonic West 757815‐1: 7578.

6 6 Ikesue, A. and Aung, Y.L. (2016). Synthesis of Yb:YAG ceramics without sintering additives and their performance. Rapid Comm. J. Am. Ceram. Soc.: 1–4.

7 7 A. Ikesue, Y. L. Aung, and T. Kamimura. (2015). Optical properties of P‐type, neutral, N‐type and pure Nd:YAG ceramics. Fr‐O‐2‐I‐1, 11th Laser Ceramics Symposium International Symposium on Transparent Ceramics for Photonic Application, Xuzhou, China, December 4, 2015.

8 8 Schad, S.‐S., Gottwald, T., Kuhn, V. et al. (2016). Recent development of disk lasers at TRUMPF. In: Proc. SPIE 9726, 972615–972615‐972616.

9 9 Sato, Y. et al. (2004). Spectroscopic properties and laser operation pf Nd:Y3ScAl4O12 polycrystalline gain media, solid solutions of Nd:Y3Al5O12 and Nd:Y3Sc2Al3O12 ceramics. J. Ceram. Soc. Jpn. 112: S313–S316.

10 10 Saikawa, J., Sato, Y., Taira, T., and Ikesue, A. (2004). Passive mode locking of a mixed garnet Yb:Y3Sc1Al4O12 ceramic laser. Appl. Phys. Lett. 85: 5845–5847.

11 11 N. Ter‐Gabrielyan, L. D. Merkel, G. A. Newburgh, M. Dubinskii, and A. Ikesue. (2008). Proc. Adv. Solid State Photon., Nara, Japan, TuB4.

12 12 Kaminskii, A.A., Kurokawa, H., Shirakawa, A. et al. (2009). Ba(Mg,Zr,Ta)O3 fine‐grained ceramic: a novel laser gain material with disordered structure for high‐power laser systems. Laser Phys. Lett. 6: 304–310.

13 13 Sarthou, J., Aballea, P., Patriarche, G. et al. (2016). Wet‐route synthesis and characterization of Yb:CaF2 optical ceramics. J. Am. Ceram. Soc. https://doi.org/10.1111/jace.14216.

14 14 Aballea, P., Suganuma, A., Druon, F. et al. (2015). Laser performance of diode‐pumed Yb:CaF2 optical ceramics synthesized using an energy‐efficient process. Optica 2 (4): 288–291.

15 15 Kitajima, S., Shirakawa, A., Ueda, K., and Ishizawa, H. (2017). Femstosecond mode‐locked Yb3+‐doped CaF2‐LaF3 ceramic laser. IEEE: 1–1. https://doi.org/10.1109/CLEOE‐EQEC.2017.8086286.

16 16 Chen, H., Ikesue, A., Noto, H. et al. (2019). Nd3+‐activated CaF2 ceramic lasers. Opt. Lett. 44: 3378–3381.

17 17 Mirov, S., Fedorov, V., Moskalev, I., and Martyshkin, D. (2007). IEEE J. Sel. Top. Quantum Electron. 13 (3): 810.

18 18 Kim, H., Fair, G.E., Hart, A.M. et al. (2015). Development of polycrystalline yttrium aluminum garnet (YAG) fibers. J. Eur. Ceram. Soc. 35: 4251–4258.

19 19 Kim, H., Hay, R.S., Mcdaiel, S.A. et al. (2017). Lasing of surface‐polished polycrystalline Ho: YAG(yttrium aluminum garnet) fiber. Opt. Express 25 (6): 6725–6731.

20 20 Sato, Y., Arzakantsyan, M., Akiyama, J., and Taira, T. (2014). Anisotropic Yb:FAP laser ceramics by micro‐domain control. Opt. Mater. Express 4: 2006–2015.

21 21 Akiyama, J., Sato, Y., and taira, T. (2010). Laser ceramics with rare‐earth‐doped anisotropic materials. Opt. Lett. 35 (21): 3598–3600.

22 22 H. Furuse, N. Horiuch, and B. N. Kim. (2019). Transparent non‐cubic laser ceramics with fine microstructure. Science Rept., doi:10.1038/s41598‐019‐46616‐8.

23 23 Penilla, E.H., Devia‐Cruz, L.F., Daurte, M.A. et al. (2018). Gain in polycrystalline Nd‐doped alumina: leveraging length scales to create a new class of high‐energy, short pulse, tunable laser materials. Off. J. CIOMP: 2047–7538. https://doi.org/10.1038/s41377‐018‐0023‐z.

24 24 Paper submitted to European Ceramic Society. (2020). High quality sapphire crystal by advanced chemical transport process.

25 25 Ikesue, A. and Aung, Y.L. (2006). Synthesis and performance of advanced ceramic lasers. J. Am. Ceram. Soc. 89: 1936–1944.

26 26 Zheng, L., Aka, G., Ikesue, A. et al. (2013). Laser transition on 4F3/2→4I9/2 and 4F3/2→4I11/2 in Nd:YAG core ceramics composites with Gaussian doping profile. In: in Advanced Solid‐State Lasers Congress (eds. G. Huber and P. Moulton) OSA Technical Digest (online). Optical Society of America, paper AM1A.2.

27 27 Yanagitani, T. and Yagi, H. (2008). Rev. Laser Eng. 36 (9): 544–548.

Processing of Ceramics

Подняться наверх