Modern Trends in Structural and Solid Mechanics 1

Modern Trends in Structural and Solid Mechanics 1
Автор книги: id книги: 2078651     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (159,04$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Физика Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119831877 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

This book – comprised of three separate volumes – presents the recent developments and research discoveries in structural and solid mechanics; it is dedicated to Professor Isaac Elishakoff. <p>This first volume is devoted to the statics and stability of solid and structural members. Modern Trends in Structural and Solid Mechanics 1 has broad scope, covering topics such as: buckling of discrete systems (elastic chains, lattices with short and long range interactions, and discrete arches), buckling of continuous structural elements including beams, arches and plates, static investigation of composite plates, exact solutions of plate problems, elastic and inelastic buckling, dynamic buckling under impulsive loading, buckling and post-buckling investigations, buckling of conservative and non-conservative systems and buckling of micro and macro-systems.</p> <p>This book is intended for graduate students and researchers in the field of theoretical and applied mechanics.</p>

Оглавление

Группа авторов. Modern Trends in Structural and Solid Mechanics 1

Table of Contents

List of Illustrations

List of Tables

Guide

Pages

Modern Trends in Structural and Solid Mechanics 1. Statics and Stability

Preface. Short Bibliographical Presentation of Prof. Isaac Elishakoff

Books by Elishakoff

Books edited or co-edited by Elishakoff

1. Static Deformations of Fiber-Reinforced Composite Laminates by the Least-Squares Method

1.1. Introduction

1.2. Formulation of the problem

1.3. Results and discussion. 1.3.1. Verification of the numerical algorithm

1.3.2. Simply supported sandwich plate

1.3.3. Laminate with arbitrary boundary conditions

1.4. Remarks

1.5. Conclusion

1.6. Acknowledgments

1.7. References

2. Stability of Laterally Compressed Elastic Chains. 2.1. Introduction

2.2. Compression of stacked elastic sheets

2.3. Stability of an elastically coupled cyclic chain

2.4. Elastic stability of two coupled rods with disorder

2.5. Spatial localization of lateral buckling in a disordered chain of elastically coupled rigid rods

2.6. Conclusion

2.7. References

3. Analysis of a Beck’s Column over Fractional-Order Restraints via Extended Routh–Hurwitz Theorem. 3.1. Introduction

3.2. Material hereditariness

3.2.1. Linear hereditariness: fractional-order models

3.3. Dynamic equilibrium of an elastic cantilever over a fractional-order foundation

3.4. Stability analysis of Beck’s column over fractional-order hereditary foundation

3.4.1. The characteristic polynomial

3.4.2. State-space representation of the dynamic equilibrium equation

3.4.3. Stability analysis of fractional-order Beck’s column via the extended Routh–Hurwitz criterion

3.5. Numerical application

3.6. Conclusion

3.7. References

4. Localization in the Static Response of Higher-Order Lattices with Long-Range Interactions

4.1. Introduction

4.2. Two-neighbor interaction – general formulation – homogeneous solution

4.3. Two-neighbor interaction – localization in a weakened problem

4.4. Conclusion

4.5. References

5. New Analytic Solutions for Elastic Buckling of Isotropic Plates. 5.1. Introduction

5.2. Equilibrium equation

5.3. Solution

5.4. Boundary condition

5.5. Numerical results

5.6. Conclusion

5.7. Appendix A: Deflection, slopes, bending moments and shears

5.8. Appendix B: Function transformation

5.9. References

6. Buckling and Post-Buckling of Parabolic Arches with Local Damage. 6.1. Introduction

6.2. A one-dimensional model for arches

6.2.1. Finite kinematics and balance, linear elastic law

6.2.2. Non-trivial fundamental equilibrium path

6.2.3. Bifurcated path

6.2.4. Special benchmark examples

6.3. Parabolic arches

6.4. Crack models for one-dimensional elements

6.5. An application

6.5.1. A comparison

6.6. Final remarks

6.7. Acknowledgments

6.8. References

7. Inelastic Microbuckling of Composites by Wave-Buckling Analogy. 7.1. Introduction

7.2. Buckling-wave propagation analogy

7.3. Microbuckling in elastic orthotropic composites

7.4. Inelastic microbuckling

7.5. Results and discussion

7.6. References

8. Quasi-Bifurcation of Discrete Systems with Unstable Post-Critical Behavior under Impulsive Loads

8.1. Introduction

8.2. Case study of a two DOF system with unstable static behavior

8.3. Exploring the static and dynamic behavior of the two DOF system

8.4. The dynamic stability criterion due to Lee

8.5. New stability bounds following Lee’s approach

8.6. Conclusion

8.7. Acknowledgments

8.8. References

9. Singularly Perturbed Problems of Drill String Buckling in Deep Curvilinear Borehole Channels. 9.1. Introduction

9.2. Singular perturbation theory: elements and history

9.3. Posing the problem of a drill string buckling in the curvilinear borehole

9.4. Modeling the drill string buckling in lowering operation

9.5. References

10. Shape-optimized Cantilevered Columns under a Rocket-based Follower Force

10.1. Background

10.2. Aims

10.3. Numerical analysis. 10.3.1. Stability analysis

10.3.2. Optimum design

10.3.2.1. Optimization problem I: maximization of critical load under a constant volume

10.3.2.2. Optimization problem II: minimization of volume under a constant critical load

10.3.2.3. Solution by sequential linear optimization

10.3.2.4. Optimality criterion by a single (simple) flutter load

10.4. Experiment. 10.4.1. General description

10.4.2. Rocket motor

10.4.3. Columns

10.4.4. Free vibration test

10.5. Flutter test

10.6. Concluding remarks

10.7. Acknowledgments

10.8. Appendix

10.9. References

11. Hencky Bar-Chain Model for Buckling Analysis and Optimal Design of Trapezoidal Arches

11.1. Introduction

11.2. Buckling analysis of trapezoidal arches based on the HBM

11.2.1. Description of the HBM

11.2.2. HBM stiffness matrix formulation

11.2.3. Governing equation considering compatibility conditions

11.2.4. Verification of the HBM

11.3. Optimal design of symmetric trapezoidal arches. 11.3.1. Problem definition

11.3.2. Optimization procedure

11.3.3. Optimal solutions

11.3.4. Sensitivity analysis of optimal solutions

11.3.5. Comparison with the buckling load of optimal fully stressed trapezoidal arches

11.4. Concluding remarks

11.5. References

List of Authors

Index. A, B, C

D, E, F

G, H, I, J

L, M, N, O

P, R

S, T

U, V, W

Summary of Volume 2

Summary of Volume 3

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Series Editor

.....

Elishakoff, I. and Ren, Y. (2003). Finite Element Methods for Structures with Large Stochastic Variations. Oxford University Press, Oxford.

Elishakoff, I., Lin, Y.K., Zhu, L.P. (1994). Probabilistic and Convex Modeling of Acoustically Excited Structures. Elsevier, Amsterdam.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Modern Trends in Structural and Solid Mechanics 1
Подняться наверх