Читать книгу Modern Trends in Structural and Solid Mechanics 2 - Группа авторов - Страница 25
1.11. References
ОглавлениеAbramowitz, M. and Stegun, I.A. (1965). Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York.
Andrianov, I.V. (2008). Asymptotic construction of nonlinear normal modes for continuous systems. Nonl. Dyn., 51(1–2), 99–109.
Andrianov, I.V. and Iskra, V.S. (1991). Use of Bolotin’s asymptotic method in the optimal control problem. Probl. Mashinostr., 36, 79–82.
Andrianov, I.V. and Kholod, E.G. (1985). Natural nonlinear oscillations of shallow shells. Struct. Mech. Theory Struct., 4, 51–54.
Andrianov, I.V. and Kholod, E.G. (1993a). Intermediate asymptotical forms in nonlinear dynamics of shells. Mech. Solids, 28(2), 160–165.
Andrianov, I.V. and Kholod, E.G. (1993b). Non-linear free vibration of shallow cylindrical shell by Bolotin’s asymptotic method. J. Sound Vib., 165(1), 9–17.
Andrianov, I.V. and Kholod, E.G. (1995). Bolotin’s asymptotic method for nonlinear free vibration of shells. SAMS, 18–19, 211–213.
Andrianov, I.V. and Krizhevskiy, G.A. (1987). Modified asymptotic method for the problems of stiffened constructions dynamics. Struct. Mech. Theory Struct., 2, 66–68.
Andrianov, I.V. and Krizhevskiy, G.A. (1988). Calculation of skew plate natural oscillation by approximate method. Izv. VUZov. Civil Eng. Archit., 12, 46–49.
Andrianov, I.V. and Krizhevskiy, G.A. (1989). Analytical investigation of geometrically nonlinear oscillation of sector plates, reinforced by radial ribs. Dokl. AN Ukr. SSR, ser. A, 11, 30–33.
Andrianov, I.V. and Krizhevskiy, G.A. (1991). Investigation of natural oscillation of circle and sector plates with consideration of geometrical nonlinearity. Mech. Solids, 26(2), 143–148.
Andrianov, I.V. and Krizhevsky, G.A. (1993). Free vibration analysis of rectangular plates with structural inhomogeneity. J. Sound Vib., 162(2), 231–241.
Andrianov, I.V., Manevitch, L.I., Kholod, E.G. (1979). On the nonlinear oscillation of rectangular plates. Struct. Mech. Theory Struct., 5, 48–51.
Andrianov, I.V., Awrejcewicz, J., Manevitch, L.I. (2004). Asymptotical Mechanics of Thin-Walled Structures: A Handbook. Springer-Verlag, Heidelberg, Berlin.
Andrianov, I.V., Awrejcewicz, J., Danishevs’kyy, V.V., Ivankov, A.O. (2014). Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions. John Wiley & Sons, Chichester.
Avramov, K.V. and Mikhlin, Y.V. (2013). Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev., 65(2), 020801-20.
Awrejcewicz, J., Andrianov, I.V., Manevitch, L.I. (1998). Asymptotic Approaches in Nonlinear Dynamics: New Trends and Applications. Springer-Verlag, Heidelberg, Berlin, New York.
Babich, V.M. and Buldyrev, V.S. (1991). Asymptotic Methods in Short-Wavelength Diffraction Theory. Springer, Berlin.
Babich, V.M., Buldyrev, V.S., Molotkov, I.A. (1985). A Space-Time Ray Method. Leningrad University, Leningrad.
Bagdasaryan, G.E. (1986). Application of V.V. Bolotin’s asymptotic methods for investigation of magnetoelastic vibration of rectangular plates. Probl. Mashinostr., 25, 63–68.
Bauer, S.M., Filippov, S.B., Smirnov, A.L., Tovstik, P.E., Vaillancourt, R. (2015). Asymptotic Methods in Mechanics of Solids. Birkhäuser, Basel.
Birger, I.A. and Panovko, Y.G. (1968). Prochnost. Ustoichivost. Kolebaniya (Strength. Stability. Oscillations Handbook) 3. Mashinostroyenie, Moscow.
Blumenthal, O. (1912). Über asymptotische Integration von Differentialgleichungen mit Anwendung auf eine asymptotische Theorie der Kugelfunctionen. Archiv Math. Physik, ser. 3, 19, 136–174.
Blumenthal, O. (1914). Über asymptotische Integration von Differentialgleichungen mit Anwendung auf die Berechnung von Spannungen in Kugelschalen. Z. Math. Physik, 62, 343–358. Extract previously appeared in Proc. Fifth Intern. Cong. Math., Cambridge (1913), II, 319–327.
Bolotin, V.V. (1960a). Dynamic edge effect in the elastic vibrations of plates. Inzh. Sb., 31, 3–14.
Bolotin, V.V. (1960b). The edge effect in the oscillations of elastic shells. J. Appl. Math. Mech., 24(5), 1257–1272.
Bolotin, V.V. (1961a). A generalization of the asymptotic method of the eigenvalue problems for rectangular regions. Inzh. Zh., 1(3), 86–92.
Bolotin, V.V. (1961b). An asymptotic method for the study of the problem of eigenvalues of rectangular regions. Problems of Continuum Mechanics, SIAM, 56–68.
Bolotin, V.V. (1961c). Asymptotic method in the theory of oscillations of elastic plates and shells. Tr. Konf. po Teorii Plastin i Obolochek, Kazan State University, 21–26.
Bolotin, V.V. (1961d). The natural oscillations of a rectangular elastic parallelepiped. J. Appl. Math. Mech., 25(1), 220–227.
Bolotin, V.V. (1963). On the density of the distribution of natural frequencies of thin elastic shells. J. Appl. Math. Mech., 27(2), 538–543.
Bolotin, V.V. (1966). Broadband random vibrations of elastic systems. Int. J. Solids Struct., 2(1), 105–124.
Bolotin, V.V. (1970). Application of edge effect theory to forced vibration analysis of elastic systems. Trudy Moscow Energet. Inst. Dyn. Soprot. Mater., 74, 180–192.
Bolotin, V.V. (1984). Random Vibrations of Elastic Systems. Springer, Dordrecht.
Bolotin, V.V. (2006). 80th birthday tribute. J. Appl. Math. Mech., 70(2), 161–175.
Bolotin, V.V., Marein N.S., Vinokurov A.I., Poznyak E.L., Ivovich V.A. (1958). Vibration and vibrational strength of overhead power lines. Nauch. Dokl. Vish. Shkoly. Energetika, 2, 55–62.
Bolotin, V.V., Makarov, V.P., Mishenkov, G.V., Shveiko, Yu.Yu. (1960). Asymptotic method of investigating the eigenfrequency spectrum of elastic plates. Rasch. Prochn., 6, 231–253.
Bolotin, V.V., Gol’denblat, I.I., Smirnov, A.F. (1961). Modern Problems of Structural Mechanics. Stroyizdat, Moscow.
Chen, G. and Zhou, J. (1993). Vibration and Damping in Distributed Systems Vol. II: WKB and Wave Methods, Visualization and Experimentation. CRC Press, Boca Raton.
Chen, G., Coleman, M.P., Zhou, J. (1991). Analysis of vibration eigenfrequencies of a thin plate by the Keller-Rubinow wave method I: Clamped boundary conditions with rectangular or circular geometry. SIAM J. Appl. Math., 51(4), 967–983.
Chen, G., Coleman, M.P., Zhou, J. (1992). The equivalence between the wave propagation method and Bolotin’s method in the asymptotic estimation of eigenfrequencies of a rectangular plate. Wave Motion, 16(3), 285–297.
Crighton, D.G. (1994). Asymptotics – An indispensable complement to thought, computation and experiment in applied mathematical modelling. In Seventh Europ. Conf. Math. Ind., Fasano, A., Primicerio, M.B., Teubner, G. (eds). B.G. Teubner, Stuttgart.
Dickinson, S.M. (1971). The flexural vibration of rectangular orthotropic plates subject to in-plane forces. J. Appl. Mech., 38(3), 699–700.
Dickinson, S.M. (1975a). Bolotin’s method applied to the buckling and lateral vibration of stressed plates. AIAA J., 13(1), 109–110.
Dickinson, S.M. (1975b). Modified Bolotin’s method applied to buckling and vibration of stressed plates. AIAA J., 13(12), 1672–1673.
Dickinson, S.M. and Warburton, G.B. (1967). Natural frequencies of plate systems using the edge effect method. J. Mech. Eng. Sci., 9(4), 318–324.
Dubovskikh, Y.A., Khromatov, V.E., Chirkov, V.E. (1996). Asymptotic analysis of stability and postcritical behavior of elastic panels in a supersonic flow. Mech. Solids, 31(3), 65–75.
Elishakoff, I. (1974). Vibration analysis of clamped square orthotropic plate. AIAA J., 12, 921–924.
Elishakoff, I. (1976). Bolotin’s dynamic edge-effect method. Shock Vibr. Digest, 8(1), 95–104.
Elishakoff, I. and Steinberg, A. (1979). Eigenfrequencies of continuous plates with arbitrary number of equal spans. J. Appl. Mech., 46, 656–662.
Elishakoff, I. and Wiener, F. (1976). Vibration of an open shallow cylindrical shell. J. Sound Vibr., 44, 379–392.
Elishakoff, I., Steinberg, A., van Baten, T. (1993). Vibration of multispan stiffened plates via modified dynamic edge effect method. Comp. Meth. Appl. Mech. Eng., 105, 211–223.
Elishakoff, I., Lin, Y.K., Zhu, L.P. (1994). Probabilistic and Convex Modelling of Acoustically Excited Structures. Elsevier, Amsterdam.
Emmerling, F.A. (1979). Ermittlung von Eigenkreisfrequenzen schwingender Rechteckplatten mit Hilfe der asymptotishen Methode von Bolotin. Stahlbau, 49(11), 327–334.
Gavrilov, Y.V. (1961a). Determination of natural vibration frequencies of elastic circular cylindrical shells. Izv. AN SSSR OTN Mech. Mashin., 1, 161–163.
Gavrilov, Y.V. (1961b). Investigation of the spectrum of natural oscillations of elastic cylindrical shells. Tr. Konf. po Teorii Plastin i Obolochek, Kazan State University, 72–76.
Gibigaye, M., Yabi, C.P., Alloba, I.E. (2016). Dynamic response of a rigid pavement plate based on an inertial soil. Int. Schol. Res. Not., 1–9.
Golubeva, T.N., Korobkov, Y.S., Khromatov, V.E. (2013). The influence of a longitudinal magnetic field on the frequency spectra of oscillations of ferromagnetic plates. Electrotechnika, 3, 44–48.
Gontkevich, V.S. (1964). Natural Oscillations of Plates and Shells. Naukova Dumka, Kiev.
Kantorovich, L.V. and Krylov, V.I. (1958). Approximate Methods of Higher Analysis. Noordhoff, Groningen.
Kauderer, H. (1958). Nichtlineare Mechanik. Springer, Berlin, Göttingen, Heidelberg.
Kaza, V. and Ramaiah, G.K. (1978). Use of asymptotic solutions from a modified Bolotin method for obtaining natural frequencies of clamped rectangular orthotropic plates. J. Sound Vib., 59(3), 335–347.
Keller, J.B. and Rubinow, S.I. (1960). Asymptotic solution of eigenvalue problems. Ann. Phys., 9(1), 24–75. Errata, Ann. Phys., 9(2).
Khromatov, V.E. (1972a). Properties of spectra of thin circular cylindrical shells oscillating near momentless stress state. Mech. Solids, 7(2), 103–108.
Khromatov, V.E. (1972b). Density of frequencies of natural oscillations of thin spherical shells in momentless stress state. Trudy Moscow Energet. Inst., 101, 148–153.
Khromatov, V.E. and Golubeva, T.N. (2013). Oscillations and stability of a ferromagnetic cylindrical shell in a magnetic field. Vestnik Moscow Avia. Inst., 20(3), 212–219.
King, W.W. and Lin, C.-C. (1974). Application of Bolotin’s method to vibrations of plates. AIAA J., 12(3), 399–401.
Kline, S.J. (1965). Similitude and Approximation Theory. McGraw-Hill, New York.
Koreshkova, N.S. and Khromatov, V.E. (2009). On the influence of a transverse magnetic field on the vibration spectra of shallow shells. Mech. Solids, 44, 632–638.
Krizhevskii, G.A. (1988). Combination of Rayleigh and dynamic edge effect methods in studying vibrations of rectangular plates. J. Appl. Mech. Techn. Phys., 29(6), 919–921.
Krizhevskii, G.A. (1989). Vibration and stability of orthotropic rectangular plates. Sov. Appl. Mech., 25(8), 822–825.
Kudryavtsev, E.P. (1960). Influence of shear deformation and rotary inertia on flexural vibration of an elastic beam. Izv. AN SSSR OTN Mech. Mashin., 5, 156–159.
Kudryavtsev, E.P. (1964). Application of asymptotic method for investigating the eigenfrequencies of elastic rectangular plates. Rasch. Prochn., 10, 352–362.
Lin, C.C. and King, W.W. (1974). Free transverse vibrations of rectangular unsymmetrically laminated plates. J. Sound Vib., 36(1), 91–103.
Maslov, V.P. and Fedoryuk, M.V. (1981). Semi-classical Approximation in Quantum Mechanics. Kluwer, Dordrecht.
Meilani, M. (2012). Modified Bolotin method to obtain the natural frequency of stiffened plate with semirigid support. Procedia Eng., 50, 110–121.
Meilani, M. (2015). Obtaining the natural frequency of stiffened plate with modified Bolotin method. Int. J. Appl. Eng. Res., 9(23), 21501–21512.
Mikhlin, Y.V. and Avramov, K.V. (2011). Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments. Appl. Mech. Rev., 63(6), 060802–21.
Mitzner, K.M. (2003). Foreword. In Theory of Edge Diffraction in Electromagnetics, Ufimtsev, P.Y. (ed.). Tech Science Press, Encino, California.
Moskalenko, V.N. (1961). On the application of refined theories of bending of plates in free vibration problems. Inzh. Zh., 1(3), 93–101.
Moskalenko, V.N. (1968). Random vibrations of multi-span plates. Mech. Solids, 3(4), 79–84.
Moskalenko, V.N. (1969). On the vibrations of multispan plates. Rasch. Prochn., 14, 360–367.
Moskalenko, V.N. (1972). On the frequency spectra of natural vibrations of shells of revolution. J. Appl. Math. Mech., 36(2), 279–283.
Moskalenko, V.N. (1975). Frequency spectra and modes of free vibrations of doubly periodic systems. J. Appl. Math. Mech., 39, 503–510.
Moskalenko, V.N. and Chen, D.L. (1965). On natural vibrations of multispan uncut plates. Prikl. Mekh. (Appl. Mech.), 1(3), 59–66.
Nayfeh, A.H. (2000). Perturbation Methods. Wiley, New York.
Nelson, H.M. (1978). High frequency flexural vibration of thick rectangular bars and plates. J. Sound Vib., 60, 101–118.
Pevzner, P., Berkovits, A., Weller, T. (2000). Further modification of Bolotin method in vibration analysis of rectangular plates. AIAA J., 38(9), 1725–1729.
Reissner, H.J. (1912). Spannungen in Kugelschalen (Kuppeln). Festschrift Heinrich Müller-Breslau gewidmet nach Vollendung seines sechzigsten Lebensjahres. Alfred-Kröner Verlag, Leipzig, 181–193.
Rich, B. and Janos, L. (1994). Skunk Works: A Personal Memoir of My Years at Lockheed. Little Brown, Boston.
Rosenberg, R.M. (1962). The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech., 29, 7–14.
Shtaerman, I.Y. (1924). On the application of the method of asymptotic integration to the calculation of elastic shells. Izv. Kievskogo Polit. & S.-H. Inst., 1(2), 75–99.
Stearn, S.M. (1970). Spatial variation of stress strain and acceleration in structures subject to broad frequency band excitation. J. Sound Vib., 12, 85–97.
Ueng, C.E.S. and Nickels Jr., R.C. (1978). Dynamic response of structural panel by Bolotin’s method. Int. J. Solids Struct., 14(7), 571–578.
Ufimtsev, P.Y. (1962). Method of Edge Waves in the Physical Theory of Diffraction, translated by Foreign Technology Division Wright-Patterson AFB. Def. Techn. Inf. Center, Cameron Station, Alexandria.
Ufimtsev, P.Y. (2003). Theory of Edge Diffraction in Electromagnetics. Tech Science Press, Encino, California.
Ufimtsev, P.Y. (2014). Fundamentals of the Physical Theory of Diffraction. John Wiley & Sons, Hoboken, New Jersey.
Vakhromeev, Y.M. and Kornev, V.M. (1972). Dynamic edge effect in beams. Formulation of truncated problems. Mech. Solids, 7(4), 95–103.
Vijaykumar, K. and Ramaiah, G.K. (1978a). Analysis of vibration of clamped square plates by the Rayleigh-Ritz method with asymptotic solutions from a modified Bolotin method. J. Sound Vib., 56(1), 127–135.
Vijaykumar, K. and Ramaiah, G.K. (1978b). Use of asymptotic solutions from a modified Bolotin method for obtaining natural frequencies of clamped rectangular orthotropic plates. J. Sound Vib., 59(3), 335–347.
Wah, T. (1964). The normal modes of vibration of certain nonlinear continuous systems. J. Appl. Mech., 31(1), 139–140.
Weaver Jr., W., Timoshenko, S.P., Young, D.H. (1990). Vibration Problems in Engineering, 5th edition. John Wiley & Sons, New York.
Wikipedia (2020). WKB approximation [Online]. Available at: https://en.wikipedia.org/wiki/WKB_approximation [accessed July 2020].
Zhinzher, N.I. (1975). Dynamic edge effects in orthotropic elastic shells. J. Appl. Math. Mech., 39(4), 723–726.
Zhinzher, N.I. (1983). Asymptotic method in problems of aeroelastic stability. Probl. Ust. Predel. Nesushch. Sposobnosti Konstr. Leningrad, 44–53.
Zhinzher, N.I. and Denisov, V.N. (1983). Asymptotic method in a problem of nonlinear shell vibrations. Strength Mater., 15(9), 1219–1223.
Zhinzher, N.I. and Denisov, V.N. (1985). Asymptotic method in the problem of nonlinear oscillations of isotropic rectangular plates. Mech. Solids, 20(1), 152–158.
Zhinzher, N.I. and Kadarmetov, I.M. (1984). Application of the asymptotic method to the problem of supersonic flutter of a cylindrical shell. Koleb. Uprug. Konstr. s Zhidkost. Moscow, 114–118.
Zhinzher, N.I. and Kadarmetov, I.M. (1986). Application of the asymptotic method to the problem of the flutter of an orthotropic cylindrical shell. Izv. AN ArmSSR Mech., 39(2), 31–39.
Zhinzher, N.I. and Khromatov, V.E. (1971). Application of the asymptotic method to the study of vibration spectra of orthotropic circular cylindrical shells. Mech. Solids, 6(6), 72–82.
Zhinzher, N.I. and Khromatov, V.E. (1984). Asymptotic method in problems of nonlinear vibration of rectangular slightly orthotropic plates. Sov. Appl. Mech., 20(11), 742–746.
Zhinzher, N.I. and Khromatov, V.E. (1990). Oscillation of shallow shells with finite amplitudes. Sov. Appl. Mech., 26(11), 1100–1104.
Chapter written by Igor V. ANDRIANOV and Lelya A. KHAJIYEVA.