Читать книгу Supercharge, Invasion, and Mudcake Growth in Downhole Applications - Группа авторов - Страница 3

List of Illustrations

Оглавление

1 Chapter 1Figure 1.1. Drawdown-buildup pressure response with dynamic pumping action and f...Figure 1.2. Downhole, surface and logging truck operations.Figure 1.3. Recent formation testing book publications.Figure 1.4. Conventional formation tester tool strings.Figure 1.5. Formation testers, additional developments.Figure 1.6. Conventional dual and triple probe testers.Figure 1.7. Dual probe tester with dual packer.Figure 1.8. Early COSL single and dual probe prototype formation testers (detail...Figure 1.9. COSL pad designs with varied sizes and shapes, for different applica...Figure 1.10. Tool string configurations.Figure 1.11. Tool architectures.Figure 1.12. Surface control interface.Figure 1.13. Pressure measurement chart (left) and real-time fluid monitoring ch...Figure 1.14. Tool string configurations.Figure 1.15. Tool architecture.Figure 1.16. Tool and surface system.Figure 1.17. Pressure drawdown curve (left) and fluid contact curve (right).Figure 1.18. IPSRD stuck tool release mechanism.Figure 1.19. Rigsite facilities.Figure 1.20. New triple probe formation tester. Pads with “small round nozzle an...Figure 1.21. New COSL triple probe tester, perspective view.Figure 1.22. Simulator menu for Probes 3, 7 and 11 (top), sink Probe 7 pressure ...

2 Chapter 2Figure 2.1. Early COSL single and dual probe formation testers (where “dual” ref...Figure 2.2. Single probe formation tester (courtesy, COSL).Figure 2.3. Dual probe formation tester (courtesy, COSL).Figure 2.4. Piston pad pressed against the sandface.Figure 2.5a. Idealized spherical flow for isotropic formations, ellipsoidal flow...Figure 2.5b. Axisymmetric “ring” source.Figure 2.6. Ellipsoidal anisotropic flow, skin layer, three-dimensional finite e...Figure 2.7. “Near-Wellbore, Finite-Element Simulator (NEWS™)” from Halliburton E...Figure 2.8. Dual probe, pretest, simulation-pressure contours, 100 md isotropic ...Figure 2.9. Pressure contours for the first drawdown with two probes and the sec...Figure 2.10a. Forward simulation assumptions.Figure 2.10b. Pumpout schedule, volume flow rate.Figure 2.10c. Source probe pressure.Figure 2.10d. Observation probe pressure.Figure 2.11a. Source (bottom) and observation probe (top) pressure responses.Figure 2.11b. Inverse steady-state solver.Figure 2.12a. Constant rate pumping example.Figure 2.12b. Source probe response (all runs).Figure 2.12c. Observation probe response versus dip angle.Figure 2.13a. kh = 10 md, kv = 1 md (that is, kh > kv).Figure 2.13b. kh = kv = 4.642 md (that is, isotropic).Figure 2.13c. kh = 1 md, kv = 100.0 md (that is, kh < kv).Figure 2.14a. Three-dimensional computational mesh.Figure 2.14b. Borehole orientation.Figure 2.14c. Azimuthal pressure response in layered media.Figure 2.15a. Layered anisotropic media with dipping tool.Figure 2.15b. Pressure transient response, amplitude and phase contrasts clear (...Figure 2.15c. Multiple receiver phase delay formation tester (see, Section 2.3.5...Figure 2.15d. Transmitter-receiver, receiver-receiver operational modes (see, Se...Figure 2.16a. Nomenclature for pressure transient analysis.Figure 2.16b. Exact FT-00 forward simulation results from single pre-test (note ...Figure 2.16c. Predicted pore pressure and mobility (lower right).Figure 2.16d. Exact FT-00 forward simulation pressures for two sequential pre-te...Figure 2.16e. Predictions (first pre-test).Figure 2.16f. Predictions (second pre-test).Figure 2.17a. FT-06 liquid-gas simulator inputs.Figure 2.17b. FT-06 pump rate and pressure solutions.Figure 2.18. Repeat formation tester (RFT™).Figure 2.19a. Test procedure from Schlumberger U.S. Patent 5,279,153 (flat press...Figure 2.19b. New method for multiple drawdowns (refer to lower transient curves...Figure 2.20a. Schlumberger mobility parameters assumed.Figure 2.20b. Pressure response inferred from steady Schlumberger.Figure 2.21a. Flowline volume, 200 cc.Figure 2.21b. Flowline volume, 500 cc.Figure 2.21c. Flowline volume, 1,000 cc.Figure 2.21d. Flowline volume, 2,000 cc.Figure 2.22a. Time-dependent flowline volume.Figure 2.22b. Volume flow rate, flowline volume, source probe pressure plots.Figure 2.23. Simple “two-receiver” observation probe.Figure 2.24. Transmitter “marker” defines instant of departure.Figure 2.25a. Estimating time delays for given parameters.Figure 2.25b. Predicting permeability from time delay.Figure 2.26. Amplitude (left) and phase delay (right) versus r and ω.Figure 2.27a. Constant frequency pump excitation.Figure 2.27b. Input data and exploded view.Figure 2.27c. Source and observation probe pressure.Figure 2.28a. Square wave assumptions and pressure responses.Figure 2.28b. Pressure responses, exploded view.Figure 2.29a. Layered anisotropic medium with dipping tool.Figure 2.29b. Discretized grid for finite difference solution.Figure 2.30. Windows-based program interface.Figure 2.31. Rotatable plot of √(Pr 2 + P i 2) versus x and y for given layer (“...Figure 2.32. Phase delay plot (-100 to +100 psi for source pressure).Figure 2.33. Output text summaries.Figure 2.34a. Very high 1,000 md run.Figure 2.34b. High 100 md run.Figure 2.34c. Moderate 10 md run.Figure 2.34d. Low 1 md run.Figure 2.35a. Isotropic run, high permeability middle layer.Figure 2.35b. Isotropic run, low permeability middle layer.Figure 2.35c. Anisotropic run, high permeability middle layer.Figure 2.35d. Anisotropic run, low permeability middle layer.Figure 2.36a. Vertical tool (0° dip) in layered anisotropic medium.Figure 2.36b. Horizontal tool (90° dip) in layered anisotropic medium.Figure 2.36c. Deviated tool (45° dip) in layered anisotropic medium.Figure 2.37a. Isotropic three-layer system.Figure 2.37b. Dual probe system entirely in top layer.Figure 2.37c. Source in middle layer, observation probe outside.Figure 2.37d. Dual probe system entirely in middle layer.Figure 2.38a. Three layer example.Figure 2.38b. Observation probe responses at 10 Hz (left) and 0.5 Hz (right).Figure 2.39a. FT-00 (Main Interactive) exact forward liquid simulator.Figure 2.39b. FT-00 (Batch Mode) exact forward liquid simulator.Figure 2.39c. FT-00 (DOI) exact forward liquid simulator.Figure 2.40. FT-01, exact inverse liquid simulator.Figure 2.41. FT-02, exact, steady forward and inverse gas simulators.Figure 2.42a. FT-06, numerical liquid and gas forward simulator.Figure 2.42b. FT-06, general flow rate functions, forward simulator.Figure 2.42c. FT-07, a FT-06 extension supporting general time-varying flowline ...Figure 2.43. FT-PTA-DDBU, early time, low mobility, flowline volume non-negligib...Figure 2.44. Classic inverse model.Figure 2.45. Both software modules apply to drawdown-buildup applications using ...Figure 2.46. Input screen for “Model SC-DD-INVERSE-2.”Figure 2.47. Input screen for “Model SC-DD-FORWARD-3B.”Figure 2.48a. Input screen for “Model SC-DD-FORWARD-2-CREATE-TABLES-3B.”Figure 2.48b. Pressure trends for selected overbalance pressures.Figure 2.49a. Input screen for “Model SC-DDBU-INVERSE-2.”Figure 2.49b. Input screen for “Model SC-DDBU-FORWARD-4NOPOR.”Figure 2.50. Input screen for integrated forward simulator for both “drawdown on...Figure 2.51. Main interface, “multiple drawdown and buildup” inverse models (MDD...Figure 2.52. Exact steady-state inverse solver (see “center button,” main menu).Figure 2.53. Inverse method, Model 2 (same as FT-PTA-DDBU).Figure 2.54. Eleven transient inverse situations supported.Figure 2.55. Original Schlumberger double-drawdown application.Figure 2.56. Main system level simulation menus and options.Figure 2.57. Run-time simulation menus for specific run.Figure 2.58. Initial cylindrical invasion and mudcake buildup.Figure 2.59. Pumpout (red) and simultaneous invasion (blue).Figure 2.60. Early results (left) and later dynamics (right) times.Figure 2.61. Integrated software platform, a beginning.Figure 2.62. Underbalanced drilling with reservoir outflow.Figure 2.63. Overbalanced drilling with wellbore inflow.Figure 2.64. Overbalanced and underbalanced drilling applications with sealed bo...Figure 2.65a. Pressure transient response with overbalance.Figure 2.65b. Pressure transient response with overbalance.Figure 2.65c. Pressure transient response with overbalance.Figure 2.65d. Pressure trends for selected overbalance pressures.Figure 2.65e. Pressure trends for selected overbalance pressures.Figure 2.65f. Pressure transient response with overbalance.Figure 2.65g. Pressure transient response with overbalance.Figure 2.66a. Pressure transient response with overbalance.Figure 2.66b. Pressure transient response with overbalance. Inverse calculation ...Figure 2.66c. Pressure transient response with overbalance.Figure 2.66d. Pressure transient response with overbalance.Figure 2.66e. Pressure transient response with overbalance.Figure 2.67. Eleven general drawdown-buildup inverse models.Figure 2.68a. Model 1 rate function (black dots denote data points).Figure 2.68b. Model 2 rate function (black dots denote data points).Figure 2.68c. Model 3 rate function.Figure 2.68d. Model 4 rate function.Figure 2.68e. Model 5 rate function.Figure 2.68f. Model 6 rate function.Figure 2.68g. Model 7 rate function.Figure 2.68h. Model 8 rate function.Figure 2.68i. Model 9 rate function.Figure 2.68j. Model 10 rate function.Figure 2.69a. Model 11 rate function (three “black circles” show pressure data s...Figure 2.69b. FT-00 exact inputs.Figure 2.69c. Source probe pressure and pumpout schedule (all rates > 0). Flow r...Figure 2.69d. Inverse model screen.Figure 2.69e. FT-00 exact inputs.Figure 2.69f. Source probe pressure and pumpout schedule (mixed signs).Figure 2.69g. Inverse model screen.Figure 2.69h. FT-00 exact inputs.Figure 2.69i. Source probe pressure and pumpout schedule (mixed signs).Figure 2.69j. Inverse model screen.Figure 2.69k. FT-00 exact inputs.Figure 2.69l. Source probe pressure and pumpout schedule (mixed signs).Figure 2.69m. Inverse model screen.Figure 2.70a. Catscan, linear test vessel with core sample (flow, top to bottom)...Figure 2.70b. Radial flow Catscan test vessel.Figure 2.70c. Catscan, invasion in radial core sample (inner invaded white zone ...Figure 2.70d. Linear flow Catscans, thin dark mudcake at center of core and inva...Figure 2.70e. Linear flow Catscans, standard optical contrast.Figure 2.70f. Linear flow Catscans, high contrast visualization.Figure 2.71. Single-probe supercharging and pumping model.Figure 2.72. Pressure and contamination profiles in r-z plane.Figure 2.73a. Pressure-concentration profiles, 0.33 sec.Figure 2.73b. Pressure-concentration profiles, 1.00 min.Figure 2.73c. Pressure-concentration profiles, 3.33 min.Figure 2.73d. Pressure-concentration profiles, 3.67 min.Figure 2.73e. Pressure-concentration profiles, 5.67 min.Figure 2.73f. Formation fluid concentration at source probe.Figure 2.73g. Source probe pressure transient history.Figure 2.73h. Observation probe pressure transient history.Figure 2.74a. Initial pumping, highly invaded upper zone.Figure 2.74b. Supercharging seen in left pressure plot.Figure 2.74c. Continued supercharging and invasion.Figure 2.75a. Initial cylindrical invasion before pumping.Figure 2.75b. Dual probe pumping initiated.Figure 2.75c. Supercharging evident at large times.Figure 2.76a. Initial pumping of cylindrical invaded region.Figure 2.76b. Continued straddle packer pumping.Figure 2.76c. Strong lateral pumping.Figure 2.76d. Lower formation strongly affected.Figure 2.77. Source and observation probe pressures.Figure 2.78. Source probe formation fluid concentration.Figure 2.79a. Field log, multirate flow and pressure.Figure 2.79b. Source and observation probe simulation.

3 Chapter 3Figure 3.1. Total pumpout of 5 cc, for all three piston scenarios.Figure 3.2a. Constant rate pumping (idealization).Figure 3.2b. FT-00 forward simulator input menu.Figure 3.2c. Pumpout schedule.Figure 3.2d. Source probe pressure.Figure 3.2e. Observation probe pressure.Figure 3.2f. Model 1, for drawdown “pressure-time” data.Figure 3.2g. Inverse pressure buildup problem (Model 2).Figure 3.2h. Inverse worksheet.Figure 3.3a. Slow ramp up/down rate pumping.Figure 3.3b. FT-00 forward simulator input menu.Figure 3.3c. Pumpout schedule.Figure 3.3d. Source probe pressure.Figure 3.3e. Observation probe pressure.Figure 3.3f. Model 6 inverse problem.Figure 3.4a. Impulsive start/stop rate pumping.Figure 3.4b. FT-00 forward simulator assumptions.Figure 3.4c. Pumpout schedule.Figure 3.4d. Source prove pressure.Figure 3.4e. Observation probe pressure.Figure 3.4f. Model 6, inverse solver.Figure 3.5a. “Fast Forward” forward supercharge simulator.Figure 3.5b. Drawdown-buildup with strong supercharge.Figure 3.5c. Drawdown – only curve with supercharge.Figure 3.5d. Drawdown-only inverse supercharge model.Figure 3.5e. Drawdown-buildup inverse supercharge model.Figure 3.6a. Creating FT-00 pressure transient data for an anisotropic simulatio...Figure 3.6b. Source and observation probe pressures versus time at different mag...Figure 3.6c. FT-01 input screen.Figure 3.6d. Drawdown inverse method.Figure 3.6e. Exact direct gas solver for dual probe steady flows.Figure 3.7. Conventional dual and triple probe testers.Figure 3.8. Multiple “receiver” formation tester (having multiple spaced observa...Figure 3.9. Transmitter-receiver, receiver-receiver operations modes (see Chapte...Figure 3.10. Main FT-00 menu, see bottom right “Run” button.Figure 3.11. Depth of investigation, DOI” analysis setup.Figure 3.12a. Flow rate schedule.Figure 3.12b. Source probe response.Figure 3.12c. Pressure response at 10 cm (3.9 in).Figure 3.12d. Pressure response at 20 cm (7.9 in).Figure 3.12e. Pressure response at 20 cm (7.9 in), continued.Figure 3.12f. Pressure response at 50 cm.Figure 3.12g. Pressure response at 90 cm (35 in).Figure 3.13. FT-00 host simulator.Figure 3.14. Batch mode information message.Figure 3.15. Loop parameter setup.Figure 3.16. FT-00 running in automated batch mode (note, ? and ??).Figure 3.17. Option to view pressure plots.Figure 3.18a. Simulation No. 1, input parameters.Figure 3.18b. Simulation No. 1, Source probe response.Figure 3.18c. Simulation No. 1, Observation probe response.Figure 3.19a. Simulation No. 2, with kh = 1 md again, kv increased.Figure 3.19b. Simulation No. 2, Source probe response.Figure 3.19c. Simulation No. 2, Observation probe response.Figure 3.20a. Simulation No. 25, last kh = 500 md, kv = 100 md.Figure 3.20b. Simulation No. 25, Source probe response.Figure 3.20c. Simulation No. 25, Observation probe response.Figure 3.21. Mudcake thickness and hole radius considerations.Figure 3.22. Exact lineal invasion solution (Chin et al., 1986).Figure 3.23a. Radial flow Catscan test vessel.Figure 3.23b. Catscan invasion in radial core sample (inner invaded white zone d...

4 Chapter 4Figure 4.1a. Supercharge problem in formation testing.Figure 4.1b. Linear flow Catscans, thin dark mudcake at center of core and invas...Figure 4.1c. Stuck tool removal mechanism.Figure 4.2. Exact lineal invasion solution (Chin et al., 1986).Figure 4.3. Any surface f(x,y,z,t) = 0 in a reservoir.Figure 4.4. Lineal flow.Figure 4.5. Cylindrical radial flow.Figure 4.6. Spherical flow at the drillbit.Figure 4.7. Simple laboratory mudcake buildup.Figure 4.8. Simple linear flow of two dissimilar fluids.Figure 4.9. Three-layer lineal flow.Figure 4.10. Three-layer radial flow.Figure 4.11. Lineal flow.Figure 4.12. Radial flow test, 15 ppg mud, Δp = 150 psi.Figure 4.13. Radial mudcake growth on filter paper.Figure 4.14. Radial versus lineal mudcake theory.Figure 4.15. Radial invasion without mudcake.Figure 4.16. Numerical results, forward invasion simulation.Figure 4.17. Numerical results, inverse invasion simulation.Figure 4.18. Numerical results, forward invasion simulation.Figure 4.19. Numerical results, inverse invasion simulation.

5 Chapter 5Figure 5.1. Finite difference discretizations.Figure 5.2. Tridiagonal equation solver.Figure 5.3a. Fortran source code (Example 5-1).Figure 5.3b. Numerical results (Example 5-1).Figure 5.3c. Numerical results (Example 5-1).Figure 5.4a. Fortran source code (Example 5-2).Figure 5.4b. Numerical results (Example 5-2).Figure 5.4c. Numerical results (Example 5-2).Figure 5.5a. Numerical results (Example 5-3).Figure 5.5b. Numerical results (Example 5-3).Figure 5.6a. Fortran source code (Example 5-4).Figure 5.6b. Numerical results (Example 5-4).Figure 5.7. Gas displacement by liquid.Figure 5.8a. Fortran source code (Example 5-6).Figure 5.8b. Numerical results (Example 5-6).Figure 5.8c. Numerical results (Example 5-6).Figure 5.9a. Three-layer lineal flow problem.Figure 5.9b. Fortran source code (Example 5-7).Figure 5.9c. Numerical results (Example 5-7).Figure 5.10. Pressure in lineal core.Figure 5.11. Diffusive front motion.Figure 5.12a. A diffusing lineal flow.Figure 5.12b. An “un-diffusing” lineal flow.Figure 5.13a. A diffusing radial flow.Figure 5.13b. An “undiffusing” radial flow.Figure 5.14. Nonlinear saturation solver.Figure 5.15a. Zero mud filtrate influx.Figure 5.15b. Very slow constant injection rate.Figure 5.15c. Q = 1, constant rate, high inertia flow.Figure 5.15d. Q = 2, constant rate, high inertia flow.Figure 5.15e. Q = 3, constant rate, high inertia flow.Figure 5.16. Mudcake-dominated invasion.Figure 5.17a. High filtration rate mudcake model (α = 1).Figure 5.17b. Very high filtration rate mudcake model (α = 5).Figure 5.17c. Very slow filtration rate model (α = 0.001).Figure 5.18. “Un-shocking” a steep gradient.Figure 5.19a. Forward shock formation.Figure 5.19b. Backward shock migration.Figure 5.20. Implicit pressure – implicit saturation solver.Figure 5.21a. Early time saturation and pressure.Figure 5.21b. Intermediate time saturation and pressure.Figure 5.21c. Late time saturation and pressure.Figure 5.22. Two-layer mudcake-rock, immiscible flow model.Figure 5.23a. Early time solution.Figure 5.23b. Intermediate time solution.Figure 5.23c. Late time solution.Figure 5.24a. Early time solution.Figure 5.24b. Intermediate time solution.Figure 5.24c. Late time solution.Figure 5.25a. COSL formation testing software platform.Figure 5.25b. COSL formation testing software platform.Figure 5.25c. COSL formation testing software platform.Figure 5.25d. COSL formation testing software platform.Figure 5.25e. COSL formation testing software platform.

Supercharge, Invasion, and Mudcake Growth in Downhole Applications

Подняться наверх