Читать книгу Mantle Convection and Surface Expressions - Группа авторов - Страница 28
REFERENCES
Оглавление1 Austermann, J., B. T. Kaye, J. X. Mitrovica, & P. Huybers (2014). A statistical analysis of the correlation between large igneous provinces and lower mantle seismic structure. Geophysical Journal International, 197(1), 1–9, doi:10.1093/gji/ggt500.
2 Ballmer, M. D., N. C. Schmerr, T. Nakagawa, & J. Ritsema (2015). Compositional mantle layering revealed by slab stagnation at ∼1000‐km depth. Science Advances, 1(11), e1500,815, doi:10.1126/sciadv.1500815.
3 Becker, T. W., & L. Boschi (2002). A comparison of tomographic and geodynamic mantle models. Geochemistry, Geophysics, Geosystems, 3(1), 1003–n/a, doi:10.1029/2001GC000168.
4 Becker, T. W., C. O’Neill, & B. Steinberger (2014). HC, a global mantle circulation solver.
5 Boioli, F., P. Carrez, P. Cordier, B. Devincre, K. Gouriet, P. Hirel, A. Kraych, & S. Ritterbex (2017). Pure climb creep mechanism drives flow in Earth’s lower mantle. Science Advances, 3(3), e1601,958, doi:10.1126/sciadv.1601958.
6 Boschi, L., & A. M. Dziewonski (1999). High‐ and low‐resolution images of the Earth’s mantle: Implications of different approaches to tomographic modeling. Journal of Geophysical Research: Solid Earth, 104(B11), 25,567–25,594, doi:10.1029/1999JB900166.
7 Bower, D. J., M. Gurnis, & M. Seton (2013). Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochemistry, Geophysics, Geosystems, 14(1), 44–63, doi:10.1029/2012GC004267.
8 Bozdağ, E., D. Peter, M. Lefebvre, D. Komatitsch, J. Tromp, J. Hill, N. Podhorszki, & D. Pugmire (2016). Global adjoint tomography: first‐generation model. Geophysical Journal International, 207(3), 1739–1766, doi:10.1093/gji/ggw356.
9 Burke, K., & T. H. Torsvik (2004). Derivation of Large Igneous Provinces of the past 200 million years from long‐term heterogeneities in the deep mantle. Earth and Planetary Science Letters, 227(3–4), 531–538.
10 Burke, K., B. Steinberger, T. H. Torsvik, & M. A. Smethurst (2008). Plume Generation Zones at the margins of Large Low Shear Velocity Provinces on the core–mantle boundary. Earth and Planetary Science Letters, 265(1–2), 49–60, doi:10.1016/j.epsl.2007.09.042.
11 Cammarano, F., S. Goes, P. Vacher, & D. Giardini (2003). Inferring upper‐mantle temperatures from seismic velocities. Physics of the Earth and Planetary Interiors, 138(3), 197–222, doi:10.1016/S0031‐9201(03)00156‐0.
12 Capdeville, Y., Y. Gung, & B. Romanowicz (2005). Towards global earth tomography using the spectral element method: a technique based on source stacking. Geophysical Journal International, 162(2), 541–554, doi:10.1111/j.1365‐246X.2005.02689.x.
13 Chambat, F., Y. Ricard, & B. Valette (2010). Flattening of the Earth: further from hydrostaticity than previously estimated. Geophysical Journal International, 183(2), 727–732, doi:10.1111/j.1365‐246X.2010.04771.x.
14 Christensen, U. R., & D. A. Yuen (1985). Layered convection induced by phase transitions. Journal of Geophysical Research: Solid Earth, 90(B12), 10,291–10,300, doi:10.1029/JB090iB12p10291.
15 Conrad, C. P., B. Steinberger, & T. H. Torsvik (2013). Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature, 498(7455), 479–482, doi:10.1038/nature12203.
16 Cottaar, S., & V. Lekic (2016). Morphology of seismically slow lower‐mantle structures. Geophysical Journal International, 207(2), 1122–1136, doi:10.1093/gji/ggw324.
17 Dahlen, F. A., & J. Tromp (1998). Theoretical Global Seismology, Princeton University Press.
18 Davaille, A., F. Girard, & M. Le Bars (2002), How to anchor hotspots in a convecting mantle? Earth and Planetary Science Letters, 203(2). 621–634, doi:10.1016/S0012‐821X(02)00897‐X.
19 Davies, D. R., S. Goes, & H. C. P. Lau (2015), Thermally Dominated Deep Mantle LLSVPs: A Review. In A. Khan and F. Deschamps (Eds.), The Earth’s Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective, pp. 441–477, Springer International Publishing, Cham, doi:10.1007/978‐3‐319‐15627‐9_14.
20 Deng, J., & K. K. M. Lee (2017). Viscosity jump in the lower mantle inferred from melting curves of ferropericlase. Nature Communications, 8(1), 1997, doi:10.1038/s41467‐017‐02263‐z.
21 Domeier, M., P. V. Doubrovine, T. H. Torsvik, W. Spakman, & A. L. Bull (2016). Global correlation of lower mantle structure and past subduction. Geophysical Research Letters, 43(10), 4945–4953, doi:10.1002/2016GL068827.
22 Durand, S., E. Debayle, Y. Ricard, C. Zaroli, & S. Lambotte (2017). Confirmation of a change in the global shear velocity pattern at around 1000 km depth. Geophysical Journal International, 211(3), 1628–1639, doi:10.1093/gji/ggx405.
23 Fei, Y., J. Van Orman, J. Li, W. van Westrenen, C. Sanloup, W. Minarik, K. Hirose, T. Komabayashi, M. Walter, & K. Funakoshi (2004). Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research: Solid Earth (1978–2012), 109(B2).
24 Forte, A. M., & J. X. Mitrovica (2001). Deep‐mantle high‐viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 410, 1049–1056.
25 Forte, A. M., A. M. Dziewonski, & R. L. Woodward (1993), Aspherical Structure of the Mantle, Tectonic Plate Motions, Nonhydrostatic Geoid, and Topography of the Core‐Mantle Boundary. In Dynamics of Earth’s Deep Interior and Earth Rotation, pp. 135–166, American Geophysical Union (AGU). doi:10.1029/GM072p0135.
26 French, S. W., & B. Romanowicz (2015), Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525(7567). 95–99, doi:10.1038/nature14876.
27 French, S. W., & B. A. Romanowicz (2014), Whole‐mantle radially anisotropic shear velocity structure from spectral‐element waveform tomography. Geophysical Journal International, 199(3). 1303–1327, doi:10.1093/gji/ggu334.
28 Frost, D. A., E. J. Garnero, & S. Rost (2018), Dynamical links between small‐ and large‐scale mantle heterogeneity: Seismological evidence. Earth and Planetary Science Letters, 482, 135–146, doi:10.1016/j.epsl.2017.10.058.
29 Fukao, Y., & M. Obayashi (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research (Solid Earth), 118(11), 2013JB010,466–5938, doi:10.1002/2013JB010466.
30 Ghosh, A., T. W. Becker, & S. J. Zhong (2010). Effects of lateral viscosity variations on the geoid. Geophysical Research Letters, 37(1), 01,301, doi:10.1029/2009GL040426.
31 Girard, J., G. Amulele, R. Farla, A. Mohiuddin, and S.‐i. Karato (2016). Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science, 351(6269), 144–147, doi:10.1126/science.aad3113.
32 Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711–732, doi:10.1093/biomet/82.4.711.
33 Hager, B. H., & R. J. O’Connell (1981). A simple global model of plate dynamics and mantle convection. Journal of Geophysical Research, 86(B), 4843–4867, doi:10.1029/JB086iB06p04843.
34 Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, & A. M. Dziewonski (1985). Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 313(6003), 541–545, doi:10.1038/314752a0.
35 He, Y., & L. Wen (2009). Structural features and shear‐velocity structure of the “Pacific Anomaly.” J. Geophys. Res., 114(B2), B02,309, doi:10.1029/2008JB005814.
36 Jellinek, A. M., & M. Manga (2002). The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature, 418(6899), 760–763, doi:10.1038/nature00979.
37 Jenkins, J., A. Deuss, & S. Cottaar (2016). Converted phases from sharp 1000 km depth mid‐mantle heterogeneity beneath Western Europe. Earth and Planetary Science Letters, 459, 196–207, doi:10.1016/j.epsl.2016.11.031.
38 Jordan, T. H., P. Puster, & G. A. Glatzmaier (1993). Comparisons between seismic Earth structures and mantle flow models based on radial correlation functions. Science, 261, 1427–1431.
39 Kaercher, P., L. Miyagi, W. Kanitpanyacharoen, E. Zepeda‐Alarcon, Y. Wang, D. Parkinson, R. A. Lebensohn, F. De Carlo, & H.‐R. Wenk (2016). Two‐phase deformation of lower mantle mineral analogs. Earth and Planetary Science Letters, 456, 134–145, doi:10.1016/j.epsl.2016.09.030.
40 Karato, S.‐i., & B. B. Karki (2001). Origin of lateral variation of seismic wave velocities and density in the deep mantle. Journal of Geophysical Research: Solid Earth, 106(B10), 21,771–21,783, doi:10.1029/2001JB000214.
41 Katsura, T., H. Yamada, T. Shinmei, A. Kubo, S. Ono, M. Kanzaki, A. Yoneda, M. J. Walter, E. Ito, S. Urakawa, K. Funakoshi, & W. Utsumi (2003). Post‐spinel transition in Mg2SiO4 determined by high P–T in situ X‐ray diffractometry. Physics of the Earth and Planetary Interiors, 136(1–2), 11–24.
42 Kido, M., D. A. Yuen, O. Čadek, & T. Nakakuki (1998). Mantle viscosity derived by genetic algorithm using oceanic geoid and seismic tomography for whole‐mantle versus blocked‐flow situations. Physics of the Earth and Planetary Interiors, 107(4), 307–326.
43 King, S. D., & G. Masters (1992). An inversion for radial viscosity structure using seismic tomography. Geophysical Research Letters, 19(15), 1551–1554, doi:10.1029/92GL01700.
44 Komatitsch, D., & J. Tromp (2002). Spectral‐element simulations of global seismic wave propagation—I. Validation. Geophysical Journal International, 149(2), 390–412, doi:10.1046/j.1365‐246X.2002.01653.x.
45 Kustowski, B., G. Ekström, & A. M. Dziewoński (2008). Anisotropic shear‐wave velocity structure of the Earth’s mantle: A global model. Journal of Geophysical Research: Solid Earth, 113(B6), doi:10.1029/2007JB005169.
46 Lau, H. C. P., J. X. Mitrovica, J. Austermann, O. Crawford, D. Al‐Attar, & K. Latychev (2016). Inferences of mantle viscosity based on ice age data sets: Radial structure. Journal of Geophysical Research, 123, 7237–7252, doi:https://doi.org/10.1029/2018JB015740.
47 Lau, H. C. P., J. X. Mitrovica, J. L. Davis, J. Tromp, H.‐Y. Yang, & D. Al‐Attar (2017). Tidal tomography constrains Earth’s deep‐mantle buoyancy. Nature, 551, 321–326, doi:10.1038/nature24452.
48 Li, X.‐D., & B. Romanowicz (1995). Comparison of global waveform inversions with and without considering cross‐branch modal coupling. Geophysical Journal International, 121(3), 695–709, doi:10.1111/j.1365‐246X.1995.tb06432.x.
49 Liu, X., & S. Zhong (2015). The long‐wavelength geoid from three‐dimensional spherical models of thermal and thermochemical mantle convection. Journal of Geophysical Research: Solid Earth, 120(6), 4572–4596, doi:10.1002/2015JB012016.
50 Liu, X., & S. Zhong (2016). Constraining mantle viscosity structure for a thermochemical mantle using the geoid observation. Geochemistry, Geophysics, Geosystems, 17(3), 895–913, doi:10.1002/2015GC006161.
51 Lourenço, D. L., & M. L. Rudolph (in review). Shallow lower mantle viscosity modulates the pattern of mantle structure, in review at Proceedings of the National Academy of Sciences.
52 Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal International, 151(3), 675–688, doi:10.1046/j.1365‐246X.2002.01847.x.
53 Malinverno, A., & V. A. Briggs (2004). Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes. Geophysics, 69(4), 1005–1016, doi:10.1190/1.1778243.
54 Mao, W., & S. Zhong (2018). Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nature Geoscience, 11(11), 876, doi:10.1038/s41561‐018‐0225‐2.
55 Mao, W., & S. Zhong (2019). Controls on global mantle convective structures and their comparison with seismic models. Journal of Geophysical Research: Solid Earth, doi:10.1029/2019JB017918.
56 Marquardt, H., & L. Miyagi (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience, 8(4), 311–314, doi:10.1038/ngeo2393.
57 Masters, G., S. Johnson, G. Laske, H. Bolton, & J. H. Davies (1996). A Shear‐Velocity Model of the Mantle [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 354(1711), 1385–1411, doi:10.1098/rsta.1996.0054.
58 Masters, G., G. Laske, H. Bolton, & A. Dziewonski (2000). The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure. In Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, vol. 117, edited by S.‐i. Karato, A. M. Forte, R. Lieberman, G. Masters, & L. Stixrude, pp. 63–87, American Geophysical Union, Washington, D. C.
59 Matthews, K. J., K. T. Maloney, S. Zahirovic, S. E. Williams, M. Seton, & R. D. Müller (2016). Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146, 226–250, doi:10.1016/j.gloplacha.2016.10.002.
60 McNamara, A. K., & S. Zhong (2004). Thermochemical structures within a spherical mantle: Superplumes or piles? J. Geophys. Res., 109(B7), B07,402, doi:10.1029/2003JB002847.
61 McNamara, A. K., & S. Zhong (2005). Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437(7062), 1136–1139, doi:10.1038/nature04066.
62 Milne, G. A., J. X. Mitrovica, & A. M. Forte (1998). The sensitivity of glacial isostatic adjustment predictions to a low‐viscosity layer at the base of the upper mantle. Earth and Planetary Science Letters, 154(1), 265–278, doi:10.1016/S0012‐821X(97)00191‐X.
63 Mitrovica, J. X., & A. M. Forte (1997). Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observables. Journal of Geophysical Research: Solid Earth, 102(B2), 2751–2769, doi:10.1029/96JB03175.
64 Mitrovica, J. X., & A. M. Forte (2004). A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth and Planetary Science Letters, 225(1–2), 177–189, doi:10.1016/j.epsl.2004.06.005.
65 Morra, G., D. A. Yuen, L. Boschi, P. Chatelain, P. Koumoutsakos, & P. J. Tackley (2010). The fate of the slabs interacting with a density/viscosity hill in the mid‐mantle. Physics of the Earth and Planetary Interiors, 180(3‐4), 271–282, doi:10.1016/j.pepi.2010.04.001.
66 Moulik, P., & G. Ekström (2014). An anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long‐period waveforms. Geophysical Journal International, 199(3), 1713–1738, doi:10.1093/gji/ggu356.
67 Moulik, P., & G. Ekström (2016). The relationships between large‐scale variations in shear velocity, density, and compressional velocity in the Earth’s mantle. Journal of Geophysical Research (Solid Earth), 121(4), 2737–2771, doi:10.1002/2015JB012679.
68 Mégnin, C., H.‐P. Bunge, B. Romanowicz, & M. A. Richards (1997). Imaging 3‐D spherical convection models: What can seismic tomography tell us about mantle dynamics? Geophysical Research Letters, 24(11). 1299–1302, doi:10.1029/97GL01256.
69 Nelson, P. L., & S. P. Grand (2018). Lower‐mantle plume beneath the Yellowstone hotspot revealed by core waves, Nature Geoscience, 11(4), 280–284, doi:10.1038/s41561‐018‐0075‐y.
70 Obayashi, M., J. Yoshimitsu, G. Nolet, Y. Fukao, H. Shiobara, H. Sugioka, H. Miyamachi, & Y. Gao (2013). Finite frequency whole mantle P wave tomography: Improvement of subducted slab images. Geophysical Research Letters, 40(21), 2013GL057,401–5657, doi:10.1002/2013GL057401.
71 Panasyuk, S. V., & B. H. Hager (1998). A model of transformational superplasticity in the upper mantle. Geophysical Journal International, 133(3), 741–755, doi:10.1046/j.1365‐246X.1998.00539.x.
72 Puster, P., & T. H. Jordan (1994). Stochastic analysis of mantle convection experiments using two‐point correlation functions. Geophysical Research Letters, 21(4), 305–308, doi:10.1029/93GL02934.
73 Puster, P., T. H. Jordan, & B. H. Hager (1995). Characterization of mantle convection experiments using two‐point correlation functions. Journal of Geophysical Research: Solid Earth, 100(B4), 6351–6365, doi:10.1029/94JB03268.
74 Ricard, Y., M. Richards, C. Lithgow‐Bertelloni, & Y. Le Stunff (1993). A geodynamic model of mantle density heterogeneity. J. Geophys. Res., 98(B12), 21,895, doi:10.1029/93JB02216.
75 Richards, M. A., & B. H. Hager (1984). Geoid anomalies in a dynamic Earth, Journal of Geophysical Research: Solid Earth, 89(B7), 5987–6002, doi:10.1029/JB089iB07p05987.
76 Richards, M. A., & B. H. Hager (1989). Effects of lateral viscosity variations on long‐wavelength geoid anomalies and topography. J. Geophys. Res., 94(B8), 10,299, doi:10.1029/JB094iB08p10299.
77 Rickers, F., A. Fichtner, & J. Trampert (2013). The Iceland‐Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full‐waveform inversion. Earth and Planetary Science Letters, 367, 39–51.
78 Ries, J., S. Bettadpur, R. Eanes, Z. Kang, U. Ko, C. McCullough, P. Nagel, N. Pie, S. Poole, T. Richter, H. Save, & B. Tapley (2016). Development and Evaluation of the Global Gravity Model GGM05. Tech. Rep. CSR‐16‐02, The University of Texas at Austin, Center for Space Research.
79 Rudolph, M. L., & S. Zhong (2013). Does quadrupole stability imply LLSVP fixity? Nature, 503(7477), E3–E4, doi:doi:10.1038/nature12792.
80 Rudolph, M. L., & S. J. Zhong (2014). History and dynamics of net rotation of the mantle and lithosphere. Geochemistry, Geophysics, Geosystems, 15(9), 3645–3657.
81 Rudolph, M. L., V. Lekic, & C. Lithgow‐Bertelloni (2015). Viscosity jump in Earth’s mid‐mantle, Science, 350(6266), 1349–1352, doi:10.1126/science.aad1929.
82 Sambridge, M., T. Bodin, K. Gallagher, & H. Tkalcic (2013). Transdimensional inference in the geosciences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 20110,547, doi:10.1111/j.1365‐246X.1990.tb04588.x.
83 Schuberth, B. S. A., H.‐P. Bunge, & J. Ritsema (2009). Tomographic filtering of high‐resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochemistry, Geophysics, Geosystems, 10(5), doi:10.1029/2009GC002401.
84 Shim, S.‐H., B. Grocholski, Y. Ye, E. E. Alp, S. Xu, D. Morgan, Y. Meng, & V. B. Prakapenka (2017). Stability of ferrous‐iron‐rich bridgmanite under reducing midmantle conditions. Proceedings of the National Academy of Sciences, 114(25), 6468–6473, doi:10.1073/pnas.1614036114.
85 Simons, F., F. Dahlen, & M. Wieczorek (2006). Spatiospectral Concentration on a Sphere. SIAM Review, 48(3), 504–536, doi:10.1137/S0036144504445765.
86 Solomatov, V. S., & C. C. Reese (2008). Grain size variations in the Earth’s mantle and the evolution of primordial chemical heterogeneities. Journal of Geophysical Research: Solid Earth, 113(B7), doi:10.1029/2007JB005319.
87 Steinberger, B., & R. Holme (2008). Mantle flow models with core‐mantle boundary constraints and chemical heterogeneities in the lowermost mantle. Journal of Geophysical Research: Solid Earth, 113(B5), doi:10.1029/2007JB005080.
88 Stixrude, L., & C. Lithgow‐Bertelloni (2011). Thermodynamics of mantle minerals ‐ II. Phase equilibria. Geophysical Journal International, 184(3), 1180–1213, doi:10.1111/j.1365‐246X.2010.04890.x.
89 Su, W.‐j., & A. M. Dziewonski (1991). Predominance of long‐wavelength heterogeneity in the mantle. Nature, 352(6331), 121–126, doi:10.1038/352121a0.
90 Su, W.‐j., & A. M. Dziewonski (1992). On the scale of mantle heterogeneity, Physics of the Earth and Planetary Interiors. 74(1), 29–54, doi:10.1016/0031‐9201(92)90066‐5.
91 Su, W.‐j., & A. M. Dziewonski (1997). Simultaneous inversion for 3‐D variations in shear and bulk velocity in the mantle. Physics of the Earth and Planetary Interiors, 100(1–4), 135–156.
92 Thielmann, M., G. J. Golabek, & H. Marquardt (2020). Ferropericlase control of lower mantle rheology: Impact of phase morphology. Geochemistry, Geophysics, Geosystems, (n/a), doi:10.1029/2019GC008688.
93 Thorne, M. S., E. J. Garnero, & S. P. Grand (2004). Geographic correlation between hot spots and deep mantle lateral shear‐wave velocity gradients, Physics of the Earth and Planetary Interiors, 146(1–2), 47–63, doi:10.1016/j.pepi.2003.09.026.
94 Torsvik, T. H., M. A. Smethurst, K. Burke, & B. Steinberger (2006). Large igneous provinces generated from the margins of the large low‐velocity provinces in the deep mantle. Geophysical Journal International, 167(3), 1447–1460, doi:10.1111/j.1365‐246X.2006.03158.x.
95 van der Meer, D. G., D. J. J. van Hinsbergen, & W. Spakman (2018). Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity, Tectonophysics, 723, 309–448, doi:10.1016/j.tecto.2017.10.004.
96 Wang, Y., & L. Wen (2007). Geometry and P and S velocity structure of the “African Anomaly.” J. Geophys. Res., 112(B5), B05,313, doi:10.1029/2006JB004483.
97 Waszek, L., N. C. Schmerr, & M. D. Ballmer (2018). Global observations of reflectors in the mid‐mantle with implications for mantle structure and dynamics. Nature Communications, 9(1), 1–13, doi:10.1038/s41467‐017‐02709‐4.
98 Wen, L., & D. L. Anderson (1995). The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth and Planetary Science Letters, 133(1), 185–198, doi:10.1016/0012‐821X(95)00064‐J.
99 Williams, C. D., S. Mukhopadhyay, M. L. Rudolph, & B. Romanowicz (2019). Primitive Helium is Sourced from Seismically Slow Regions in the Lowermost Mantle. Geochemistry, Geophysics, Geosystems, 20(8), 4130–4145, doi:10.1029/2019GC008437.
100 Yuan, K., & B. Romanowicz (2017). Seismic evidence for partial melting at the root of major hot spot plumes. Science, 357(6349), 393–397, doi:10.1126/science.aan0760.
101 Zhang, N., S. Zhong, W. Leng, & Z.‐X. Li (2010). A model for the evolution of the Earth's mantle structure since the Early Paleozoic. J. Geophys. Res., 115(B6), B06,401, doi:10.1029/2009JB006896.
102 Zhong, S., M. T. Zuber, L. Moresi, & M. Gurnis (2000). Role of temperature‐dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res., 105(B5), 11,063–11,082, doi:10.1029/2000JB900003.
103 Zhong, S., A. McNamara, E. Tan, L. Moresi, & M. Gurnis (2008). A benchmark study on mantle convection in a 3‐D spherical shell using CitcomS. Geochemistry, Geophysics, Geosystems, 9(10), Q10,017.