Читать книгу Mantle Convection and Surface Expressions - Группа авторов - Страница 57
REFERENCES
Оглавление1 Allègre, C. J., & Turcotte, D. L. (1986). Implications of a two‐component marble‐cake mantle. Nature, 323(6084), 123–127. https://doi.org/10.1038/323123a0
2 Ammann, M. W., Brodholt, J. P., Wookey, J., & Dobson, D. P. (2010). First‐principles constraints on diffusion in lower‐mantle minerals and a weak D′′ layer. Nature, 465(7297), 462–465. https://doi.org/10.1038/nature09052
3 Amodeo, J., Carrez, P., & Cordier, P. (2012). Modelling the effect of pressure on the critical shear stress of MgO single crystals. Philosophical Magazine, 92(12), 1523–1541. https://doi.org/10.1080/14786435.2011.652689
4 Amodeo, J., Dancette, S., & Delannay, L. (2016). Atomistically‐informed crystal plasticity in MgO polycrystals under pressure. International Journal of Plasticity, 82(March), 177–191. https://doi.org/10.1016/j.ijplas.2016.03.004
5 Amodeo, J., Merkel, S., Tromas, C., Carrez, P., Korte‐Kerzel, S., Cordier, P., et al. (2018). Dislocations and Plastic Deformation in MgO Crystals: A Review. Crystals, 8(6), 240. https://doi.org/10.3390/cryst8060240
6 Andrault, D., Muñoz, M., Bolfan‐Casanova, N., Guignot, N., Perrillat, J. P., Aquilanti, G., & Pascarelli, S. (2010). Experimental evidence for perovskite and post‐perovskite coexistence throughout the whole D′ region. Earth and Planetary Science Letters, 293(1–2), 90–96. https://doi.org/10.1016/j.epsl.2010.02.026
7 Appel, F., & Wielke, B. (1985). Low temperature deformation of impure MgO single crystals. Materials Science and Engineering, 73, 97–103. https://doi.org/10.1016/0025‐5416(85)90299‐X
8 Arrhenius, S. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift Für Physikalische Chemie, 4(1), 226–248. https://doi.org/10.1515/zpch‐1889‐0416
9 Azuma, S., Nomura, R., Uesugi, K., Nakashima, Y., Kojima, Y., Doi, S., & Kakizawa, S. (2018). Anvil design for slip‐free high pressure deformation experiments in a rotational diamond anvil cell. High Pressure Research, 38(1), 23–31. https://doi.org/10.1080/08957959.2017.1396327
10 Barreiro, J. G., Lonardelli, I., Wenk, H. R., Dresen, G., Rybacki, E., Ren, Y., & Tomé, C. N. (2007). Preferred orientation of anorthite deformed experimentally in Newtonian creep. Earth and Planetary Science Letters, 264(1–2), 188–207. https://doi.org/10.1016/j.epsl.2007.09.018
11 Boehler, R. (2000). Laser heating in the diamond cell: techniques and applications. Hyperfine Interactions, 128(1/3), 307–321. https://doi.org/10.1023/A:1012648019016
12 Boioli, F., Carrez, P., Cordier, P., Devincre, B., Gouriet, K., Hirel, P., et al. (2017). Pure climb creep mechanism drives flow in Earth’s lower mantle. Science Advances, 3(3), e1601958. https://doi.org/10.1126/sciadv.1601958
13 Bons, P. D., & den Brok, B. (2000). Crystallographic preferred orientation development by dissolution–precipitation creep. Journal of Structural Geology, 22(11–12), 1713–1722. https://doi.org/10.1016/S0191‐8141(00)00075‐4
14 Brokmeier, H. G., Böcker, W., & Bunge, H. J. (1988). Neutron Diffraction Texture Analysis in Extruded Al‐Pb Composites. Textures and Microstructures, 8, 429–441. https://doi.org/10.1155/TSM.8‐9.429
15 Brown, J. M., & Shankland, T. J. (1981). Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal International, 66(3), 579–596. https://doi.org/10.1111/j.1365‐246X.1981.tb04891.x
16 Burnley, P. C., & Kaboli, S. (2019). Elastic plastic self‐consistent (EPSC) modeling of San Carlos olivine deformed in a D‐DIA apparatus. American Mineralogist, 104(2), 276–281. https://doi.org/10.2138/am‐2019‐6666
17 Burnley, P. C., & Zhang, D. (2008). Interpreting in situ x‐ray diffraction data from high pressure deformation experiments using elastic–plastic self‐consistent models: an example using quartz. Journal of Physics: Condensed Matter, 20(28), 285201. https://doi.org/10.1088/0953‐8984/20/28/285201
18 Bystricky, M., Heidelbach, F., & Mackwell, S. (2006). Large‐strain deformation and strain partitioning in polyphase rocks: Dislocation creep of olivine–magnesiowüstite aggregates. Tectonophysics, 427(1–4), 115–132. https://doi.org/10.1016/J.TECTO.2006.05.025
19 Canova, G. R., Wenk, H. R., & Molinari, A. (1992). Deformation modelling of multi‐phase polycrystals: case of a quartz‐mica aggregate. Acta Metallurgica Et Materialia, 40(7), 1519–1530. https://doi.org/10.1016/0956‐7151(92)90095‐V
20 Carrez, P., Ferré, D., & Cordier, P. (2007a). Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals. Nature, 446(7131), 68–70. https://doi.org/10.1038/nature05593
21 Carrez, P., Ferré, D., & Cordier, P. (2007b). Peierls‐Nabarro model for dislocations in MgSiO3 post‐perovskite calculated at 120 GPa from first principles. Philosophical Magazine, 87(22), 3229–3247. https://doi.org/10.1080/14786430701268914
22 Castelnau, O., Blackman, D. K., Lebensohn, R. A., & Ponte Castañeda, P. (2008). Micromechanical modeling of the viscoplastic behavior of olivine. Journal of Geophysical Research, 113(B9), B09202. https://doi.org/10.1029/2007JB005444
23 Chandler, B. C., Yuan, K., Li, M., Cottaar, S., Romanowicz, B., Tomé, C. N., & Wenk, H. R. (2018). A Refined Approach to Model Anisotropy in the Lowermost Mantle. IOP Conference Series: Materials Science and Engineering, 375(1), 012002. https://doi.org/10.1088/1757‐899X/375/1/012002
24 Chen, J., Weidner, D. J., & Vaughan, M. T. (2002). The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature, 419(6909), 824–826. https://doi.org/10.1038/nature01130
25 Clausen, B., Tomé, C. N., Brown, D. W., & Agnew, S. R. (2008). Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg. Acta Materialia, 56(11), 2456–2468. https://doi.org/10.1016/J.ACTAMAT.2008.01.057
26 Coble, R. L. (1963). A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials. Journal of Applied Physics, 34(6), 1679–1682. https://doi.org/10.1063/1.1702656
27 Copley, S. M., & Pask, J. A. (1965). Plastic Deformation of MgO Single Crystals up to 1600oC. Journal of the American Ceramic Society, 48(3), 139–146. https://doi.org/10.1111/j.1151‐2916.1965.tb16050.x
28 Cordier, P., & Goryaeva, A. (Eds.). (2018). Multiscale modeling of the mantle rheology : the RheoMan project. European research council. Retrieved from https://books.google.com/books?id=8bTRvQEACAAJ&dq=Multiscale+Modeling+of+the+Mantle+Rheology&hl=en&sa=X&ved=0ahUKEwix9_zn9trjAhWBtp4KHVcOAZ0Q6AEIKjAA
29 Cordier, P., Ungár, T., Zsoldos, L., & Tichy, G. (2004). Dislocation creep in MgSiO3 perovskite at conditions of the Earth’s uppermost lower mantle. Nature, 428(6985), 837–840. https://doi.org/10.1038/nature02472
30 Cottaar, S., Li, M., McNamara, A. K., Romanowicz, B., & Wenk, H. R. (2014). Synthetic seismic anisotropy models within a slab impinging on the core‐mantle boundary. Geophysical Journal International, 199(1), 164–177. https://doi.org/10.1093/gji/ggu244
31 Creasy, N., Pisconti, A., Long, M. D., Thomas, C., & Wookey, J. (2019). Constraining lowermost mantle anisotropy with body waves: a synthetic modelling study. Geophysical Journal International, 217(2), 766–783. https://doi.org/10.1093/gji/ggz049
32 Cross, A. J., & Skemer, P. (2017). Ultramylonite generation via phase mixing in high‐strain experiments. Journal of Geophysical Research: Solid Earth, 122(3), 1744–1759. https://doi.org/10.1002/2016JB013801
33 Deng, J., & Lee, K. K. M. (2017). Viscosity jump in the lower mantle inferred from melting curves of ferropericlase. Nature Communications, 8(1), 1997. https://doi.org/10.1038/s41467‐017‐02263‐z
34 Dobson, D. P., McCormack, R., Hunt, S. A., Ammann, M. W., Weidner, D., Li, L., & Wang, L. (2012). The relative strength of perovskite and post‐perovskite NaCoF3. Mineralogical Magazine, 76(04), 925–932. https://doi.org/10.1180/minmag.2012.076.4.09
35 Evans, W. J., Yoo, C.‐S., Lee, G. W., Cynn, H., Lipp, M. J., & Visbeck, K. (2007). Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic‐pressure properties of materials. Review of Scientific Instruments, 78(7), 073904. https://doi.org/10.1063/1.2751409
36 Ferré, D., Carrez, P., & Cordier, P. (2007). First principles determination of dislocations properties of MgSiO3 perovskite at 30 GPa based on the Peierls‐Nabarro model. Physics of the Earth and Planetary Interiors, 163(1–4), 283–291. https://doi.org/10.1016/j.pepi.2007.05.011
37 Ferré, D., Cordier, P., & Carrez, P. (2009). Dislocation modeling in calcium silicate perovskite based on the Peierls‐Nabarro model. American Mineralogist, 94(1), 135–142. https://doi.org/10.2138/am.2009.3003
38 Ferreira, A. M. G., Faccenda, M., Sturgeon, W., Chang, S.‐J., & Schardong, L. (2019). Ubiquitous lower‐mantle anisotropy beneath subduction zones. Nature Geoscience, 12(4), 301–306. https://doi.org/10.1038/s41561‐019‐0325‐7
39 Ford, H. A., & Long, M. D. (2015). A regional test of global models for flow, rheology, and seismic anisotropy at the base of the mantle. Physics of the Earth and Planetary Interiors, 245, 71–75. https://doi.org/10.1016/J.PEPI.2015.05.004
40 French, S. W., & Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525(7567), 95–99. https://doi.org/10.1038/nature14876
41 Frost, H. J., & Ashby, M. F. (1982). Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press. Retrieved from http://publications.eng.cam.ac.uk/372960/
42 Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 118(11), 5920–5938. https://doi.org/10.1002/2013JB010466
43 Garcés, G., Pérez, P., & Adeva, P. (2005). Effect of the extrusion texture on the mechanical behaviour of Mg–SiCp composites. Scripta Materialia, 52(7), 615–619. https://doi.org/10.1016/J.SCRIPTAMAT.2004.11.024
44 Garcés, G., Rodríguez, M., Pérez, P., & Adeva, P. (2006). Effect of volume fraction and particle size on the microstructure and plastic deformation of Mg–Y2O3 composites. Materials Science and Engineering: A, 419(1–2), 357–364. https://doi.org/10.1016/J.MSEA.2006.01.026
45 Girard, J., Chen, J., & Raterron, P. (2012). Deformation of periclase single crystals at high pressure and temperature: Quantification of the effect of pressure on slip‐system activities. Journal of Applied Physics, 111(11). https://doi.org/10.1063/1.4726200
46 Girard, J., Amulele, G., Farla, R., Mohiuddin, A., & Karato, S. (2016). Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science (New York, N.Y.), 351(6269), 144–7. https://doi.org/10.1126/science.aad3113
47 Goryaeva, A. M., Carrez, P., & Cordier, P. (2015a). Modeling defects and plasticity in MgSiO3 post‐perovskite: Part 1—generalized stacking faults. Physics and Chemistry of Minerals, 42(10), 781–792. https://doi.org/10.1007/s00269‐015‐0762‐9
48 Goryaeva, A. M., Carrez, P., & Cordier, P. (2015b). Modeling defects and plasticity in MgSiO3 post‐perovskite: Part 2—screw and edge [100] dislocations. Physics and Chemistry of Minerals, 42(10), 793–803. https://doi.org/10.1007/s00269‐015‐0763‐8
49 Goryaeva, A. M., Carrez, P., & Cordier, P. (2016). Low viscosity and high attenuation in MgSiO3 post‐perovskite inferred from atomic‐scale calculations. Scientific Reports, 6(1), 34771. https://doi.org/10.1038/srep34771
50 Goryaeva, A. M., Carrez, P., & Cordier, P. (2017). Modeling defects and plasticity in MgSiO3 post‐perovskite: Part 3—Screw and edge [001] dislocations. Physics and Chemistry of Minerals, 44(7), 521–533. https://doi.org/10.1007/s00269‐017‐0879‐0
51 Gouriet, K., Carrez, P., & Cordier, P. (2014). Modelling [1 0 0] and [0 1 0] screw dislocations in MgSiO3 perovskite based on the Peierls–Nabarro–Galerkin model. Modelling and Simulation in Materials Science and Engineering, 22(2), 025020. https://doi.org/10.1088/0965‐0393/22/2/025020
52 Grocholski, B., Catalli, K., Shim, S.‐H., & Prakapenka, V. (2012). Mineralogical effects on the detectability of the postperovskite boundary. Proceedings of the National Academy of Sciences, 109(7), 2275–2279. https://doi.org/10.1073/pnas.1109204109
53 Handy, M. R. (1990). The solid‐state flow of polymineralic rocks. Journal of Geophysical Research, 95(B6), 8647. https://doi.org/10.1029/JB095iB06p08647
54 Handy, M. R. (1994). Flow laws for rocks containing two non‐linear viscous phases: A phenomenological approach. Journal of Structural Geology, 16(3), 287–301. https://doi.org/10.1016/0191‐8141(94)90035‐3
55 Heidelbach, F., Stretton, I., Langenhorst, F., & Mackwell, S. (2003). Fabric evolution during high shear strain deformation of magnesiowüstite (Mg0.8Fe0.2O). Journal of Geophysical Research: Solid Earth, 108(B3). https://doi.org/10.1029/2001JB001632
56 Hemley, R. J., Mao, H., Shen, G., Badro, J., Gillet, P., Hanfland, M., & Häusermann, D. (1997). X‐ray Imaging of Stress and Strain of Diamond, Iron, and Tungsten at Megabar Pressures. Science, 276(5316), 1242–1245. https://doi.org/10.1126/science.276.5316.1242
57 Herring, C. (1950). Diffusional Viscosity of a Polycrystalline Solid. Journal of Applied Physics, 21(5), 437–445. https://doi.org/10.1063/1.1699681
58 Hirel, P., Kraych, A., Carrez, P., & Cordier, P. (2014). Atomic core structure and mobility of [1 0 0](0 1 0) and [0 1 0](1 0 0) dislocations in MgSiO3 perovskite. Acta Materialia, 79, 117–125. https://doi.org/10.1016/j.actamat.2014.07.001
59 Hirose, K., Takafuji, N., Sata, N., & Ohishi, Y. (2005). Phase transition and density of subducted MORB crust in the lower mantle. Earth and Planetary Science Letters, 237(1–2), 239–251. https://doi.org/10.1016/j.epsl.2005.06.035
60 Hirose, K., Nagaya, Y., Merkel, S., & Ohishi, Y. (2010). Deformation of MnGeO3 post‐perovskite at lower mantle pressure and temperature. Geophysical Research Letters, 37(L20302). https://doi.org/10.1029/2010gl044977
61 Hirth, G., & Kohlstedt, D. (2003). Rheology of the upper mantle and the mantle wedge: A view from the experimentalists (pp. 83–105). American Geophysical Union (AGU). https://doi.org/10.1029/138GM06
62 Hulse, C. O., Copley, S. M., & Pask, J. A. (1963). Effect of Crystal Orientation on Plastic Deformation of Magnesium Oxide. Journal of the American Ceramic Society, 46(7), 317–323. https://doi.org/10.1111/j.1151‐2916.1963.tb11738.x
63 Hunt, S. A., & Dobson, D. P. (2017). Note: Modified anvil design for improved reliability in DT‐Cup experiments. Review of Scientific Instruments, 88(12), 126106. https://doi.org/10.1063/1.5005885
64 Hunt, S. A., Weidner, D. J., Li, L., Wang, L., Walte, N. P., Brodholt, J. P., & Dobson, D. P. (2009). Weakening of calcium iridate during its transformation from perovskite to post‐perovskite. Nature Geoscience, 2(11), 794–797. https://doi.org/10.1038/ngeo663
65 Hunt, S. A., Weidner, D. J., McCormack, R. J., Whitaker, M. L., Bailey, E., Li, L., et al. (2014). Deformation T‐Cup: A new multi‐anvil apparatus for controlled strain‐rate deformation experiments at pressures above 18 GPa. Review of Scientific Instruments, 85(8), 085103. https://doi.org/10.1063/1.4891338
66 Hunt, S. A., Walker, A. M., & Mariani, E. (2016). In‐situ measurement of texture development rate in CaIrO3 post‐perovskite. Physics of the Earth and Planetary Interiors, 257, 91–104. https://doi.org/10.1016/j.pepi.2016.05.007
67 Hunt, S. A., Fenech, D. M., Lord, O. T., Redfern, S. A. T., & Smith, J. S. (2018). Anelasticity of HCP‐Fe up to 70 GPa by overcoming X‐ray diffraction sampling limitations. In 2018 AGU Fall Meeting, Washington, D.C. (p. Abstract MR14A‐02).
68 Hustoft, J., Shim, S.‐H., Kubo, A., & Nishiyama, N. (2008). Raman spectroscopy of CaIrO3 postperovskite up to 30 GPa. American Mineralogist, 93(10), 1654–1658. https://doi.org/10.2138/am.2008.2938
69 Iitaka, T., Hirose, K., Kawamura, K., & Murakami, M. (2004). The elasticity of the {MgSiO_3} post‐perovskite phase in the lowermost mantle. Nature, 430(July), 442–445.
70 Immoor, J., Marquardt, H., Miyagi, L., Lin, F., Speziale, S., Merkel, S., et al. (2018). Evidence for {100}<011> slip in ferropericlase in Earth’s lower mantle from high‐pressure/high‐temperature experiments. Earth and Planetary Science Letters, 489, 251–257. https://doi.org/10.1016/j.epsl.2018.02.045
71 Jayaraman, A. (1983). Diamond anvil cell and high‐pressure physical investigations. Reviews of Modern Physics, 55(1), 65–108. https://doi.org/10.1103/RevModPhys.55.65
72 Jenei, Z., Liermann, H. P., Husband, R., Méndez, A. S. J., Pennicard, D., Marquardt, H., et al. (2019). New dynamic diamond anvil cells for tera‐pascal per second fast compression x‐ray diffraction experiments. Review of Scientific Instruments, 90(6), 065114. https://doi.org/10.1063/1.5098993
73 Jessell, M. W., Bons, P. D., Griera, A., Evans, L. A., & Wilson, C. J. L. (2009). A tale of two viscosities. Journal of Structural Geology, 31(7), 719–736. https://doi.org/10.1016/j.jsg.2009.04.010
74 Kaercher, P., Miyagi, L., Kanitpanyacharoen, W., Zepeda‐Alarcon, E., Wang, Y., Parkinson, D., et al. (2016). Two‐phase deformation of lower mantle mineral analogs. Earth and Planetary Science Letters, 456, 134–145. https://doi.org/10.1016/j.epsl.2016.09.030
75 Karato, S. I. (1998). Some remarks on the origin of seismic anisotropy in the D” layer. Earth, Planets and Space, 50(11–12), 1019–1028. https://doi.org/10.1186/BF03352196
76 Karato, S. I. (2009). Theory of lattice strain in a material undergoing plastic deformation: Basic formulation and applications to a cubic crystal. Physical Review B ‐ Condensed Matter and Materials Physics, 79(21), 214106. https://doi.org/10.1103/PhysRevB.79.214106
77 Karato, S. I. (2010). Rheology of the Earth’s mantle: A historical review. Gondwana Research, 18(1), 17–45. https://doi.org/10.1016/J.GR.2010.03.004
78 Karato, S. I., & Weidner, D. J. (2008). Laboratory Studies of Rheological Properties of Minerals Under Deep Mantle Conditions. Elements, 4, 191–196. https://doi.org/10.2113/GSELEMENTS.4.3.191
79 Karato, S. I., Zhang, S., & Wenk, H. R. (1995). Superplasticity in earth’s lower mantle: Evidence from seismic anisotropy and rock physics. Science, 270(5235), 458–461. https://doi.org/10.1126/science.270.5235.458
80 Karato, S. I., Jung, H., Katayama, I., & Skemer, P. (2007). Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annual Review of Earth and Planetary Sciences, 36(1), 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120
81 Karki, B. B., & Crain, J. (1998). First‐principles determination of elastic properties of CaSiO 3 perovskite at lower mantle pressures Elastic Moduli and Anisotropy, 25(14), 2741–2744.
82 Kavner, A., & Duffy, T. S. (2001). Strength and elasticity of ringwoodite at upper mantle pressures. Geophysical Research Letters. https://doi.org/10.1029/2000GL012671
83 Kawazoe, T., Ohuchi, T., Nishiyama, N., Nishihara, Y., & Irifune, T. (2010). Preliminary deformation experiment of ringwoodite at 20 GPa and 1 700 K using a D‐DIA apparatus. Journal of Earth Science, 21(5), 517–522. https://doi.org/10.1007/s12583‐010‐0120‐2
84 Knipe, R.. (1989). Deformation mechanisms — recognition from natural tectonites. Journal of Structural Geology, 11(1–2), 127–146. https://doi.org/10.1016/0191‐8141(89)90039‐4
85 Kraych, A., Carrez, P., Hirel, P., Clouet, E., & Cordier, P. (2016). Peierls potential and kink‐pair mechanism in high‐pressure MgSiO3 perovskite: An atomic scale study. Physical Review B, 93(1), 1–9. https://doi.org/10.1103/PhysRevB.93.014103
86 Kubo, A., Kiefer, B., Shim, S.‐H., Shen, G., Prakapenka, V. B., & Duffy, T. S. (2008). Rietveld structure refinement of MgGeO3 post‐perovskite phase to 1 Mbar. American Mineralogist, 93(7), 965–976. https://doi.org/10.2138/am.2008.2691
87 Kunz, M., Caldwell, W. A., Miyagi, L., & Wenk, H. R. (2007). In situ laser heating and radial synchrotron x‐ray diffraction in a diamond anvil cell. Review of Scientific Instruments, 78(6). https://doi.org/10.1063/1.2749443
88 Kurnosov, A., Marquardt, H., Frost, D. J., Ballaran, T. B., & Ziberna, L. (2017). Evidence for a Fe3+‐rich pyrolitic lower mantle from (Al,Fe)‐bearing bridgmanite elasticity data. Nature, 543(7646), 543–546. https://doi.org/10.1038/nature21390
89 Lebensohn, R. A., & Tomé, C. N. (1993). A self‐consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metallurgica Et Materialia, 41(9), 2611–2624. https://doi.org/10.1016/0956‐7151(93)90130‐K
90 Li, C., van der Hilst, R. D., Engdahl, E. R., & Burdick, S. (2008). A new global model for P wave speed variations in Earth’s mantle. Geochemistry, Geophysics, Geosystems, 9(5), n/a‐n/a. https://doi.org/10.1029/2007GC001806
91 Li, L., & Weidner, D. J. (2015). In situ analysis of texture development from sinusoidal stress at high pressure and temperature. Review of Scientific Instruments, 86(12), 125106. https://doi.org/10.1063/1.4937398
92 Li, L., Weidner, D. J., Chen, J., Vaughan, M. T., Davis, M., & Durham, W. B. (2004). X‐ray strain analysis at high pressure: Effect of plastic deformation in MgO. Journal of Applied Physics, 95(12), 8357–8365. https://doi.org/10.1063/1.1738532
93 Liermann, H. P., Merkel, Ś., Miyagi, L., Wenk, H. R., Shen, G., Cynn, H., & Evans, W. J. (2009). Experimental method for in situ determination of material textures at simultaneous high pressure and high temperature by means of radial diffraction in the diamond anvil cell. Review of Scientific Instruments, 80(10), 1–8. https://doi.org/10.1063/1.3236365
94 Lin, F., Hilairet, N., Raterron, P., Addad, A., Immoor, J., Marquardt, H., et al. (2017). Elasto‐viscoplastic self consistent modeling of the ambient temperature plastic behavior of periclase deformed up to 5.4 GPa. Journal of Applied Physics, 122(20). https://doi.org/10.1063/1.4999951
95 Lin, J.‐F., Wenk, H.‐R., Voltolini, M., Speziale, S., Shu, J., & Duffy, T. S. (2009). Deformation of lower‐mantle ferropericlase (Mg,Fe)O across the electronic spin transition. Physics and Chemistry of Minerals, 36(10), 585–592. https://doi.org/10.1007/s00269‐009‐0303‐5
96 Long, M. D., & Becker, T. W. (2010). Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297(3–4), 341–354. https://doi.org/10.1016/J.EPSL.2010.06.036
97 Long, M. D., Xiao, X., Jiang, Z., Evans, B., & Karato, S. ichiro. (2006). Lattice preferred orientation in deformed polycrystalline (Mg,Fe)O and implications for seismic anisotropy in D″. Physics of the Earth and Planetary Interiors, 156(1–2), 75–88. https://doi.org/10.1016/j.pepi.2006.02.006
98 Lutterotti, L., Matthies, S., Wenk, H. R., Schultz, A. S., & Richardson, J. W. (1997). Combined texture and structure analysis of deformed limestone from time‐of‐flight neutron diffraction spectra. Journal of Applied Physics, 81(2), 594–600. https://doi.org/10.1063/1.364220
99 Lynner, C., & Long, M. D. (2015). Heterogeneous seismic anisotropy in the transition zone and uppermost lower mantle: evidence from South America, Izu‐Bonin and Japan. Geophysical Journal International, 201(3), 1545–1552. https://doi.org/10.1093/gji/ggv099
100 Mainprice, D., Barruol, G., & Ben Ismaïl, W. (2000). The seismic anisotropy of the earth’s mantle: From single crystal to polycrystal. Geophysical Monograph Series, 117, 237–264. https://doi.org/10.1029/GM117p0237
101 Mainprice, D., Tommasi, A., Ferré, D., Carrez, P., & Cordier, P. (2008). Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg‐Perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle. Earth and Planetary Science Letters, 271(1–4), 135–144. https://doi.org/10.1016/j.epsl.2008.03.058
102 Manga, M., & Jeanloz, R. (1996). Axial temperature gradients in dielectric samples in the laser‐heated diamond cell. Geophysical Research Letters. https://doi.org/10.1029/96GL01602
103 Marquardt, H., & Miyagi, L. (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience, 8(4), 311–314. https://doi.org/10.1038/ngeo2393
104 Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., Schilling, F. R., & Garnero, E. J. (2009). Elastic shear anisotropy of ferropericlase in earth’s lower mantle. Science, 324(5924), 224–226. https://doi.org/10.1126/science.1169365
105 Martinez, I., Wang, Y., Guyot, F., Liebermann, R. C., & Doukham, J.‐C. (1997). Microstructures and iron partitioning in (Mg,Fe)SiO3 perovskite‐ (Mg,Fe)O magnesiowustite assemblages: An analytical transmission electron microscopy study. Journal of Geophysical Research, 102(B3), 5265–5280. https://doi.org/10.1029/96JB03188
106 Matas, J., Bass, J., Ricard, Y., Mattern, E., & Bukowinski, M. S. T. (2007). On the bulk composition of the lower mantle: Predictions and limitations from generalized inversion of radial seismic profiles. Geophysical Journal International, 170(2), 764–780. https://doi.org/10.1111/j.1365‐246X.2007.03454.x
107 Mattern, E., Matas, J., Ricard, Y., & Bass, J. (2005). Lower mantle composition and temperature from mineral physics and thermodynamic modelling. Geophysical Journal International, 160(3), 973–990. https://doi.org/10.1111/j.1365‐246X.2004.02549.x
108 Matthies, S., & Humbert, M. (1993). The Realization of the Concept of a Geometric Mean for Calculating Physical Constants of Polycrystalline Materials. Physica Status Solidi (B), 177(2), K47–K50. https://doi.org/10.1002/pssb.2221770231
109 Matthies, S., Priesmeyer, H. G., & Daymond, M. R. (2001). On the diffractive determination of single‐crystal elastic constants using polycrystalline samples. Journal of Applied Crystallography, 34(5), 585–601. https://doi.org/10.1107/S0021889801010482
110 McNamara, A. K., Van, P. E., & Karato, S. (2002). Development of anisotropic structure in the Earth’s lower mantle by solid‐state convection Is there evidence for the localization of dislocation creep in the lowermost mantle ?, 416(March), 310–314.
111 Meade, C., & Jeanloz, R. (1988). Yield strength of MgO to 40 GPa. Journal of Geophysical Research, 93(B4), 3261. https://doi.org/10.1029/JB093iB04p03261
112 Meade, C., & Jeanloz, R. (1990). The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle. Nature, 348(6301), 533–535. https://doi.org/10.1038/348533a0
113 Meade, C., Silver, P. G., & Kaneshima, S. (1995). Laboratory and seismological observations of lower mantle isotropy. Geophysical Research Letters, 22(10), 1293–1296. https://doi.org/10.1029/95GL01091
114 Merkel, S., & Cordier, P. (2016). Deformation of Core and Lower Mantle Materials (pp. 89–99). American Geophysical Union (AGU). https://doi.org/10.1002/9781118992487.ch7
115 Merkel, S., & Yagi, T. (2005). X‐ray transparent gasket for diamond anvil cell high pressure experiments. Review of Scientific Instruments, 76(4), 2004–2006. https://doi.org/10.1063/1.1884195
116 Merkel, S., Wenk, H. R., Shu, J., Shen, G., Gillet, P., Mao, H., & Hemley, R. J. (2002). Deformation of polycrystalline MgO at pressures of the lower mantle. Journal of Geophysical Research: Solid Earth, 107(B11), ECV 3‐1‐ECV 3‐17. https://doi.org/10.1029/2001JB000920
117 Merkel, S., Wenk, H. R., Badro, J., Montagnac, G., Gillet, P., Mao, H. K., & Hemley, R. J. (2003). Deformation of (Mg0.9,Fe0.1)SiO3Perovskite aggregates up to 32 GPa. Earth and Planetary Science Letters, 209(3–4), 351–360. https://doi.org/10.1016/S0012‐821X(03)00098‐0
118 Merkel, S., Wenk, H. R., Gillet, P., Mao, H. kwang, & Hemley, R. J. (2004). Deformation of polycrystalline iron up to 30GPa and 1000K. Physics of the Earth and Planetary Interiors, 145(1–4), 239–251. https://doi.org/10.1016/j.pepi.2004.04.001
119 Merkel, S., Kubo, A., Miyagi, L., Speziale, S., Duffy, T. S., Mao, H. K., & Wenk, H. R. (2006). Plastic deformation of MgGeO3 post‐perovskite at lower mantle pressures. Science, 311(5761), 644–646. https://doi.org/10.1126/science.1121808
120 Merkel, S., McNamara, A. K., Kubo, A., Speziale, S., Miyagi, L., Meng, Y., et al. (2007). Deformation of (Mg,Fe)SiO3 post‐perovskite and D″ anisotropy. Science, 316(5832), 1729–1732. https://doi.org/10.1126/science.1140609
121 Merkel, S., Tomé, C., & Wenk, H. R. (2009). Modeling analysis of the influence of plasticity on high pressure deformation of hcp‐Co. Physical Review B ‐ Condensed Matter and Materials Physics, 79(6), 1–13. https://doi.org/10.1103/PhysRevB. 79.064110
122 Merkel, S., Gruson, M., Wang, Y., Nishiyama, N., & Tomé, C. N. (2012). Texture and elastic strains in hcp‐iron plastically deformed up to 17.5 GPa and 600 K: experiment and model. Modelling and Simulation in Materials Science and Engineering, 20(2), 024005. https://doi.org/10.1088/0965‐0393/20/2/024005
123 Metsue, A., Carrez, P., Mainprice, D., & Cordier, P. (2009). Numerical modelling of dislocations and deformation mechanisms in CaIrO3 and MgGeO3 post‐perovskites‐Comparison with MgSiO3 post‐perovskite. Physics of the Earth and Planetary Interiors, 174(1–4), 165–173. https://doi.org/10.1016/j.pepi.2008.04.003
124 Mitrovica, J. X., & Forte, A. M. (2004). A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth and Planetary Science Letters, 225(1–2), 177–189. https://doi.org/10.1016/J.EPSL.2004.06.005
125 Miyagi, L., & Wenk, H.‐R. (2016). Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates. Physics and Chemistry of Minerals, 43(8), 597–613. https://doi.org/10.1007/s00269‐016‐0820‐y
126 Miyagi, L., Nishiyama, N., Wang, Y., Kubo, A., West, D. V., Cava, R. J., et al. (2008). Deformation and texture development in CaIrO3 post‐perovskite phase up to 6 GPa and 1300 K. Earth and Planetary Science Letters, 268(3–4), 515–525. https://doi.org/10.1016/j.epsl.2008.02.005
127 Miyagi, L., Kunz, M., Knight, J., Nasiatka, J., Voltolini, M., & Wenk, H.‐R. (2008). In situ phase transformation and deformation of iron at high pressure and temperature. Journal of Applied Physics, 104(10), 103510. https://doi.org/10.1063/1.3008035
128 Miyagi, L., Merkel, S., Yagi, T., Sata, N., Ohishi, Y., & Wenk, H. R. (2009). Diamond anvil cell deformation of CaSiO3 perovskite up to 49 GPa. Physics of the Earth and Planetary Interiors, 174(1–4), 159–164. https://doi.org/10.1016/j.pepi.2008.05.018
129 Miyagi, L., Kanitpanyacharoen, W., Kaercher, P., Lee, K. K. M., & Wenk, H.‐R. (2010). Slip Systems in MgSiO3 Post‐Perovskite: Implications for D” Anisotropy. Science, 329(5999), 1639–1641. https://doi.org/10.1126/science.1192465
130 Miyagi, L., Kanitpanyacharoen, W., Stackhouse, S., Militzer, B., & Wenk, H. R. (2011). The enigma of post‐perovskite anisotropy: Deformation versus transformation textures. Physics and Chemistry of Minerals, 38(9), 665–678. https://doi.org/10.1007/s00269‐011‐0439‐y
131 Miyagi, L., Kanitpanyacharoen, W., Raju, S. V., Kaercher, P., Knight, J., MacDowell, A., et al. (2013). Combined resistive and laser heating technique for in situ radial X‐ray diffraction in the diamond anvil cell at high pressure and temperature. In Review of Scientific Instruments (Vol. 84). https://doi.org/10.1063/1.4793398
132 Miyajima, N., & Walte, N. (2009). Burgers vector determination in deformed perovskite and post‐perovskite of CaIrO3 using thickness fringes in weak‐beam dark‐field images. Ultramicroscopy, 109(6), 683–692. https://doi.org/10.1016/j.ultramic.2009.01.010
133 Miyajima, N., Ohgushi, K., Ichihara, M., & Yagi, T. (2006). Crystal morphology and dislocation microstructures of CaIrO3: A TEM study of an analogue of the MgSiO3 post‐perovskite phase. Geophysical Research Letters, 33(12), 1–4. https://doi.org/10.1029/2005GL025001
134 Miyajima, N., Yagi, T., & Ichihara, M. (2009). Dislocation microstructures of MgSiO3 perovskite at a high pressure and temperature condition. Physics of the Earth and Planetary Interiors, 174(1–4), 153–158. https://doi.org/10.1016/j.pepi.2008.04.004
135 Miyazaki, T., Sueyoshi, K., & Hiraga, T. (2013). Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature, 502(7471), 321–326. https://doi.org/10.1038/nature12570
136 Mohiuddin, A., Long, M. D., & Lynner, C. (2015). Mid‐mantle seismic anisotropy beneath southwestern Pacific subduction systems and implications for mid‐mantle deformation. Physics of the Earth and Planetary Interiors, 245, 1–14. https://doi.org/10.1016/J.PEPI.2015.05.003
137 Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, Y. (2004). Post‐perovskite phase transition in MgSiO3. Science, 304(5672), 855–8. https://doi.org/10.1126/science.1095932
138 Nabarro, F. R. N. (1947). Dislocations in a simple cubic lattice. Proceedings of the Physical Society, 59(2), 256–272. https://doi.org/10.1088/0959‐5309/59/2/309
139 Nabarro, F. R. N. (1948). Deformation of crystals by the motion of single atoms. In Report on a Conference on Strength of Solids (pp. 75–90). London: Physical Society.
140 Nabarro, F. R. N. (1967). Steady‐state diffusional creep. Philosophical Magazine, 16(140), 231–237. https://doi.org/10.1080/14786436708229736
141 Nakagawa, T., & Tackley, P. J. (2011). Effects of low‐viscosity post‐perovskite on thermo‐chemical mantle convection in a 3‐D spherical shell. Geophysical Research Letters, 38(4), L04309. https://doi.org/10.1029/2010GL046494
142 Neil, C. J., Wollmershauser, J. A., Clausen, B., Tomé, C. N., & Agnew, S. R. (2010). Modeling lattice strain evolution at finite strains and experimental verification for copper and stainless steel using in situ neutron diffraction. International Journal of Plasticity, 26(12), 1772–1791. https://doi.org/10.1016/J.IJPLAS.2010.03.005
143 Nisr, C., Ribárik, G., Ungár, T., Vaughan, G. B. M., Cordier, P., & Merkel, S. (2012). High resolution three‐dimensional X‐ray diffraction study of dislocations in grains of MgGeO3 post‐perovskite at 90 GPa. Journal of Geophysical Research: Solid Earth, 117(B3). https://doi.org/10.1029/2011JB008401
144 Niwa, K., Yagi, T., Ohgushi, K., Merkel, S., Miyajima, N., & Kikegawa, T. (2007). Lattice preferred orientation in CaIrO3 perovskite and post‐perovskite formed by plastic deformation under pressure. Physics and Chemistry of Minerals, 34(9), 679–686. https://doi.org/10.1007/s00269‐007‐0182‐6
145 Nomura, R., Azuma, S., Uesugi, K., Nakashima, Y., Irifune, T., Shinmei, T., et al. (2017). High‐pressure rotational deformation apparatus to 135 GPa. Review of Scientific Instruments, 88(4), 044501. https://doi.org/10.1063/1.4979562
146 Nowacki, A., Wookey, J., & Kendall, J. M. (2010). Deformation of the lowermost mantle from seismic anisotropy. Nature, 467(7319), 1091–1094. https://doi.org/10.1038/nature09507
147 Nowacki, A., Wookey, J., & Kendall, J. M. (2011). New advances in using seismic anisotropy, mineral physics and geodynamics to understand deformation in the lowermost mantle. Journal of Geodynamics, 52(3–4), 205–228. https://doi.org/10.1016/j.jog.2011.04.003
148 Nowacki, A., Walker, A. M., Wookey, J., & Kendall, J.‐M. (2013). Evaluating post‐perovskite as a cause of D′′ anisotropy in regions of palaeosubduction. Geophysical Journal International, 192(3), 1085–1090. https://doi.org/10.1093/gji/ggs068
149 Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post‐perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430(6998), 445–448. https://doi.org/10.1038/nature02701
150 Oganov, A. R., Martoňák, R., Laio, A., Raiteri, P., & Parrinello, M. (2005). Anisotropy of earth’s D″ layer and stacking faults in the MgSiO3 post‐perovskite phase. Nature, 438(7071), 1142–1144. https://doi.org/10.1038/nature04439
151 Okada, T., Yagi, T., Niwa, K., & Kikegawa, T. (2010). Lattice‐preferred orientations in post‐perovskite‐type MgGeO3 formed by transformations from different pre‐phases. Physics of the Earth and Planetary Interiors, 180(3–4), 195–202. https://doi.org/10.1016/J.PEPI.2009.08.002
152 Van Orman, J. A., Fei, Y., Hauri, E. H., & Wang, J. (2003). Diffusion in MgO at high pressures: Constraints on deformation mechanisms and chemical transport at the core‐mantle boundary. Geophysical Research Letters, 30(2), 26–29. https://doi.org/10.1029/2002GL016343
153 Park, M., & Jung, H. (2017). Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones. Tectonophysics, 709, 55–68. https://doi.org/10.1016/J.TECTO.2017.04.017
154 Passchier, C. W. (Cees W., & Trouw, R. A. J. (Rudolph A. J. (2005). Microtectonics. Springer.
155 Paterson, M. S., & Weaver, C. W. (1970). Deformation of Polycrystalline Under Pressure. Journal of the American Ceramic Society, 53(8), 463–471.
156 Peierls, R. (1940). The size of a dislocation. Proceedings of the Physical Society, 52(1), 34–37. https://doi.org/10.1088/0959‐5309/52/1/305
157 Petitgirard, S., Daniel, I., Dabin, Y., Cardon, H., Tucoulou, R., & Susini, J. (2009). A diamond anvil cell for x‐ray fluorescence measurements of trace elements in fluids at high pressure and high temperature. Review of Scientific Instruments, 80(3), 033906. https://doi.org/10.1063/1.3100202
158 Piet, H., Badro, J., Nabiei, F., Dennenwaldt, T., Shim, S.‐H., Cantoni, M., et al. (2016). Spin and valence dependence of iron partitioning in Earth’s deep mantle. Proceedings of the National Academy of Sciences, 113(40), 11127–11130. https://doi.org/10.1073/PNAS.1605290113
159 Poirier, J.‐P. (1985). Creep of crystals : high‐temperature deformation processes in metals, ceramics, and minerals. Cambridge University Press.
160 Poudens, A., Bacroix, B., & Bretheau, T. (1995). Influence of microstructures and particle concentrations on the development of extrusion textures in metal matrix composites. Materials Science and Engineering: A, 196(1–2), 219–228. https://doi.org/10.1016/0921‐5093(94)09703‐8
161 Prakapenka, V. B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., et al. (2008). Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Research, 28(3), 225–235. https://doi.org/10.1080/08957950802050718
162 Raterron, P., Merkel, S., & III, C. W. H. (2013). Axial temperature gradient and stress measurements in the deformation‐DIA cell using alumina pistons. Review of Scientific Instruments, 84(4), 043906. https://doi.org/10.1063/1.4801956
163 Reali, R., Van Orman, J. A., Pigott, J. S., Jackson, J. M., Boioli, F., Carrez, P., & Cordier, P. (2019). The role of diffusion‐driven pure climb creep on the rheology of bridgmanite under lower mantle conditions. Scientific Reports, 9(1), 2053. https://doi.org/10.1038/s41598‐018‐38449‐8
164 Ricolleau, A., Perrillat, J.‐P., Fiquet, G., Daniel, I., Matas, J., Addad, A., et al. (2010). Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. Journal of Geophysical Research, 115(B8), B08202. https://doi.org/10.1029/2009JB006709
165 Rodi, F., & Babel, D. (1965). Ternare Oxide der Ubergangsmetalle. IV. Erdalkaliiridium(IV)‐oxide: Kristallstruktur von CalrO3. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 336(1–2), 17–23. https://doi.org/10.1002/zaac.19653360104
166 Romanowicz, B., & Wenk, H. R. (2017). Anisotropy in the deep Earth. Physics of the Earth and Planetary Interiors, 269(May), 58–90. https://doi.org/10.1016/j.pepi.2017.05.005
167 Rudolph, M. L., Lekić, V., & Lithgow‐Bertelloni, C. (2015). Viscosity jump in Earth’s mid‐mantle. Science (New York, N.Y.), 350(6266), 1349–52. https://doi.org/10.1126/science.aad1929
168 Samuel, H., & Tosi, N. (2012). The influence of post‐perovskite strength on the Earth’s mantle thermal and chemical evolution. Earth and Planetary Science Letters, 323–324, 50–59. https://doi.org/10.1016/J.EPSL.2012.01.024
169 Sato, F., & Sumino, K. (1980). The yield strength and dynamic behaviour of dislocations in MgO crystals at high temperatures. Journal of Materials Science, 15(7), 1625–1634. https://doi.org/10.1007/BF00550578
170 Shen, G., Rivers, M. L., Wang, Y., & Sutton, S. R. (2001). Laser heated diamond cell system at the advanced photon source for in situ x‐ray measurements at high pressure and temperature. Review of Scientific Instruments, 72(2), 1273–1282. https://doi.org/10.1063/1.1343867
171 Shieh, S. R., Duffy, T. S., & Shen, G. (2004). Elasticity and strength of calcium silicate perovskite at lower mantle pressures. Physics of the Earth and Planetary Interiors, 143(1–2), 93–105. https://doi.org/10.1016/j.pepi.2003.10.006
172 Shim, S.‐H., Jeanloz, R., & Duffy, T. S. (2002). Tetragonal structure of CaSiO3 perovskite above 20 GPa. Geophysical Research Letters, 29(24), 2166. https://doi.org/10.1029/2002GL016148
173 Shim, S.‐H., Duffy, T. S., Jeanloz, R., & Shen, G. (2004). Stability and crystal structure of MgSiO3 perovskite to the core‐mantle boundary. Geophysical Research Letters, 31(10). https://doi.org/10.1029/2004GL019639
174 Singh, A. K. (1993). The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. Journal of Applied Physics, 73(9), 4278–4286. https://doi.org/10.1063/1.352809
175 Singh, A. K., Mao, H., Shu, J., & Hemley, R. J. (1998). Estimation of Single‐Crystal Elastic Moduli from Polycrystalline X‐Ray Diffraction at High Pressure: Application to FeO and Iron. Physical Review Letters, 80(10), 2157–2160. https://doi.org/10.1103/PhysRevLett.80.2157
176 Singh, A. K., Liermann, H. P., & Saxena, S. K. (2004). Strength of magnesium oxide under high pressure: Evidence for the grain‐size dependence. Solid State Communications, 132(11), 795–798. https://doi.org/10.1016/j.ssc.2004.09.050
177 Stretton, I., Heidelbach, F., Mackwell, S., & Langenhorst, F. (2001). Dislocation creep of magnesiowuüstite (Mg0.8Fe0.2O). Earth and Planetary Science Letters, 194, 229–240.
178 Takeda, Y.‐T. (1998). Flow in rocks modelled as multiphase continua: Application to polymineralic rocks. Journal of Structural Geology, 20(11), 1569–1578. https://doi.org/10.1016/S0191‐8141(98)00043‐1
179 Takeda, Y.‐T., & Griera, A. (2006). Rheological and kinematical responses to flow of two‐phase rocks. Tectonophysics, 427(1–4), 95–113. https://doi.org/10.1016/J.TECTO.2006.03.050
180 Tommaseo, C. E., Devine, J., Merkel, S., Speziale, S., & Wenk, H. R. (2006). Texture development and elastic stresses in magnesiowustite at high pressure. Physics and Chemistry of Minerals, 33(2), 84–97. https://doi.org/10.1007/s00269‐005‐0054‐x
181 Tommasi, A., Goryaeva, A., Carrez, P., Cordier, P., & Mainprice, D. (2018). Deformation, crystal preferred orientations, and seismic anisotropy in the Earth’s D″ layer. Earth and Planetary Science Letters, 492, 35–46. https://doi.org/10.1016/J.EPSL.2018.03.032
182 Treagus, S. H. (2002). Modelling the bulk viscosity of two‐phase mixtures in terms of clast shape. Journal of Structural Geology, 24(1), 57–76. https://doi.org/10.1016/S0191‐8141(01)00049‐9
183 Tsuchiya, T., & Tsuchiya, J. (2007). Structure and elasticity of Cmcm CaIrO3 and their pressure dependences: Ab initio calculations. Physical Review B ‐ Condensed Matter and Materials Physics, 76(14), 2–5. https://doi.org/10.1103/PhysRevB.76.144119
184 Tsujino, N., Nishihara, Y., Yamazaki, D., Seto, Y., Higo, Y., & Takahashi, E. (2016). Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature, 539(7627), 81–84. https://doi.org/10.1038/nature19777
185 Tullis, J., & Wenk, H.‐R. (1994). Effect of muscovite on the strength and lattice preferred orientations of experimentally deformed quartz aggregates. Materials Science and Engineering: A, 175(1–2), 209–220. https://doi.org/10.1016/0921‐5093(94)91060‐X
186 Tullis, T. E., Horowitz, F. G., & Tullis, J. (1991). Flow laws of polyphase aggregates from end‐member flow laws. Journal of Geophysical Research, 96(B5), 8081. https://doi.org/10.1029/90JB02491
187 Turner, P. A., & Tomé, C. N. (1994). A study of residual stresses in Zircaloy‐2 with rod texture. Acta Metallurgica et Materialia, 42(12), 4143–4153. https://doi.org/10.1016/0956‐7151(94)90191‐0
188 Uchida, T., Wang, Y., Rivers, M. L., & Sutton, S. R. (2004). Yield strength and strain hardening of MgO up to 8 GPa measured in the deformation‐DIA with monochromatic X‐ray diffraction. Earth and Planetary Science Letters, 226(1–2), 117–126. https://doi.org/10.1016/j.epsl.2004.07.023
189 van’t Hoff, M. J. H. (1884). Etudes de dynamique chimique. Amsterdam: Fredrick Muller and Company. https://doi.org/10.1002/recl.18840031003
190 Walker, A. M., Forte, A. M., Wookey, J., Nowacki, A., & Kendall, J. M. (2011). Elastic anisotropy of D′′ predicted from global models of mantle flow. Geochemistry, Geophysics, Geosystems, 12(10), 1–22. https://doi.org/10.1029/2011GC003732
191 Walker, A. M., Dobson, D. P., Wookey, J., Nowacki, A., & Forte, A. M. (2018). The anisotropic signal of topotaxy during phase transitions in D″. Physics of the Earth and Planetary Interiors, 276, 159–171. https://doi.org/10.1016/j.pepi.2017.05.013
192 Walte, N. P., Heidelbach, F., Miyajima, N., & Frost, D. (2007). Texture development and TEM analysis of deformed CaIrO3: Implications for the D″ layer at the core‐mantle boundary. Geophysical Research Letters, 34(8), 1–5. https://doi.org/10.1029/2007GL029407
193 Walte, N. P., Heidelbach, F., Miyajima, N., Frost, D. J., Rubie, D. C., & Dobson, D. P. (2009). Transformation textures in post‐perovskite: Understanding mantle flow in the D’ layer of the earth. Geophysical Research Letters, 36(4), 0–4. https://doi.org/10.1029/2008GL036840
194 Wang, H., Wu, P. D., Tomé, C. N., & Huang, Y. (2010). A finite strain elastic‐viscoplastic self‐consistent model for polycrystalline materials. Journal of the Mechanics and Physics of Solids, 58(4), 594–612. https://doi.org/10.1016/j.jmps.2010.01.004
195 Wang, Y., Guyot, F., Yeganeh‐Haeri, A., & Liebermann, R. C. (1990). Twinning in MgSiO3 perovskite. Science, 248(4954), 468–471. https://doi.org/10.1126/science.248.4954.468
196 Wang, Y., Guyot, F., & Liebermann, R. C. (1992). Electron microscopy of (Mg, Fe)SiO 3 Perovskite: Evidence for structural phase transitions and implications for the lower mantle. Journal of Geophysical Research, 97(B9), 12327. https://doi.org/10.1029/92JB00870
197 Wang, Y., Durham, W. B., Getting, I. C., & Weidner, D. J. (2003). The deformation‐DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Review of Scientific Instruments, 74(6), 3002–3011. https://doi.org/10.1063/1.1570948
198 Wang, Y., Hilairet, N., Nishiyama, N., Yahata, N., Tsuchiya, T., Morard, G., & Fiquet, G. (2013). High‐pressure, high‐temperature deformation of CaGeO3 (perovskite)±MgO aggregates: Implications for multiphase rheology of the lower mantle. Geochemistry, Geophysics, Geosystems, 14(9), 3389–3408. https://doi.org/10.1002/ggge.20200
199 Weertman, J. (1970). The creep strength of the Earth’s mantle. Reviews of Geophysics, 8(1), 145. https://doi.org/10.1029/RG008i001p00145
200 Weertman, Johannes, & Weertman, J. R. (1975). High Temperature Creep of Rock and Mantle Viscosity. Annual Review of Earth and Planetary Sciences, 3(1), 293–315. https://doi.org/10.1146/annurev.ea.03.050175.001453
201 Wenk, H.‐R., Canova, G., Bréchet, Y., & Flandin, L. (1997). A deformation‐based model for recrystallization of anisotropic materials. Acta Materialia, 45(8), 3283–3296. https://doi.org/10.1016/S1359‐6454(96)00409‐0
202 Wenk, H.‐R., Matthies, S., Hemley, R. J., Mao, H. K., & Shu, J. (2000). The plastic deformation of iron at pressures of the Earth’s inner core. Nature, 405(6790), 1044–1047. https://doi.org/10.1038/35016558
203 Wenk, H.‐R., Lonardeli, I., Pehl, J., Devine, J., Prakapenka, V., Shen, G., & Mao, H. K. (2004). In situ observation of texture development in olivine, ringwoodite, magnesiowüstite and silicate perovskite at high pressure. Earth and Planetary Science Letters, 226(3–4), 507–519. https://doi.org/10.1016/j.epsl.2004.07.033
204 Wenk, H.‐R., Lonardelli, I., Merkel, S., Miyagi, L., Pehl, J., Speziale, S., & Tommaseo, C. E. (2006). Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. Journal of Physics Condensed Matter, 18(25). https://doi.org/10.1088/0953‐8984/18/25/S02
205 Wenk, H.‐R., Speziale, S., McNamara, A. K., & Garnero, E. J. (2006). Modeling lower mantle anisotropy development in a subducting slab. Earth and Planetary Science Letters, 245(1–2), 302–314. https://doi.org/10.1016/j.epsl.2006.02.028
206 Wenk, H.‐R., Cottaar, S., Tomé, C. N., McNamara, A., & Romanowicz, B. (2011). Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth and Planetary Science Letters, 306(1–2), 33–45. https://doi.org/10.1016/J.EPSL.2011.03.021
207 Wenk, H.‐R., Lutterotti, L., Kaercher, P., Kanitpanyacharoen, W., Miyagi, L., & Vasin, R. (2014). Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffraction, 29(3). https://doi.org/10.1017/S0885715614000360
208 Wookey, J., Kendall, J.‐M., & Barruol, G. (2002). Mid‐mantle deformation inferred from seismic anisotropy. Nature, 415(6873), 777–780. https://doi.org/10.1038/415777a
209 Wu, X., Lin, J. F., Kaercher, P., Mao, Z., Liu, J., Wenk, H. R., & Prakapenka, V. B. (2017). Seismic anisotropy of the D″ layer induced by (001) deformation of post‐perovskite. Nature Communications, 8, 1–6. https://doi.org/10.1038/ncomms14669
210 Xu, J., Yamazaki, D., Katsura, T., Wu, X., Remmert, P., Yurimoto, H., & Chakraborty, S. (2011). Silicon and magnesium diffusion in a single crystal of MgSiO 3 perovskite. Journal of Geophysical Research, 116(B12), B12205. https://doi.org/10.1029/2011JB008444
211 Xu, S. C., Wang, L. D., Zhao, P. T., Li, W. L., Xue, Z. W., & Fei, W. D. (2011). Evolution of texture during hot rolling of aluminum borate whisker‐reinforced 6061 aluminum alloy composite. Materials Science and Engineering: A, 528(7–8), 3243–3248. https://doi.org/10.1016/J.MSEA.2010.12.103
212 Xu, Y., Nishihara, Y., & Karato, S. (2005). Development of a rotational Drickamer apparatus for large‐strain deformation experiments at deep Earth conditions. Advances in High‐Pressure Technology for Geophysical Applications, 167–182. https://doi.org/10.1016/B978‐044451979‐5.50010‐7
213 Yamazaki, D., & Karato, S. I. (2001a). High‐pressure rotational deformation apparatus to 15 GPa. Review of Scientific Instruments, 72(11), 4207–4211. https://doi.org/10.1063/1.1412858
214 Yamazaki, D., & Karato, S. I. (2001b). Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. American Mineralogist, 86(4), 385–391. https://doi.org/10.2138/am‐2001‐0401
215 Yamazaki, D., & Karato, S. I. (2002). Fabric development in (Mg,Fe)O during large strain, shear deformation: Implications for seismic anisotropy in Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 131(3–4), 251–267. https://doi.org/10.1016/S0031‐9201(02)00037‐7
216 Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E., & Toriumi, M. (2000). Silicon self‐diffusion in MgSiO3 perovskite at 25 GPa. Physics of the Earth and Planetary Interiors, 119(3–4), 299–309. https://doi.org/10.1016/S0031‐9201(00)00135‐7
217 Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J. ichi, & Yoneda, A. (2006). Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on post‐perovskite phase. Earth and Planetary Science Letters, 252(3–4), 372–378. https://doi.org/10.1016/j.epsl.2006.10.004
218 Yoshizawa, Y., Toriyama, M., & Kanzaki, S. (2004). Fabrication of Textured Alumina by High‐Temperature Deformation. Journal of the American Ceramic Society, 84(6), 1392–1394. https://doi.org/10.1111/j.1151‐2916.2001.tb00848.x
219 Zhang, W. L., Gu, M. Y., Wang, D. Z., & Yao, Z. K. (2004). Rolling and annealing textures of a SiCw/Al composite. Materials Letters, 58(27–28), 3414–3418. https://doi.org/10.1016/J.MATLET.2004.05.065