Читать книгу Emergency Medical Services - Группа авторов - Страница 194
References
Оглавление1 1 Kobayashi L, Costantini TW, Coimbra R. Hypovolemic shock resuscitation. Surg Clin North Am. 2012; 92:1403–23.
2 2 Kerby JD, Cusick MV. Prehospital emergency trauma care and management. Surg Clin North Am. 2012; 92:823–41, vii.
3 3 American College of Surgeons Committee on Trauma. Shock. In: Advanced Trauma Life Support Program for Doctors: Student Manual, 10th ed. Chicago: American College of Surgeons, 2018.
4 4 Weil MH. Personal commentary on the diagnosis and treatment of circulatory shock states. Curr Opin Crit Care. 2004; 10:246–9.
5 5 Fowler RL, Stevens JT. Shock evaluation and management. In: Campbell J, ed. International Trauma Life Support for Prehospital Care Providers. 7th ed. Saddle River, NJ: Prentice Hall, 2012.
6 6 Cayten CG, Herrmann N, Cole LW, Walsh S. Assessing the validity of EMS data. JACEP. 1978; 7:390–6.
7 7 Runcie CJ, Reeve W, Reidy J, Dougall JR. A comparison of measurements of blood pressure, heart‐rate and oxygenation during inter‐hospital transport of the critically ill. Intensive Care Med. 1990; 16:317–22.
8 8 Rady MY, Smithline HA, Blake H, Nowak R, Rivers E. A comparison of the shock index and conventional vital signs to identify acute, critical illness in the emergency department. Ann Emerg Med. 1994; 24:685–90.
9 9 Demetriades D, Chan LS, Bhasin P, et al. Relative bradycardia in patients with traumatic hypotension. J Trauma. 1998; 45:534–9.
10 10 Poloujadoff MP, Lapostolle F, Lockey D, et al. Survival of severely shocked patients who present with absent radial pulse and unrecordable blood pressure in the pre‐hospital phase. Resuscitation 2006; 69):185–9.
11 11 Jones AE, Stiell IG, Nesbitt LP, et al. Nontraumatic out–of–hospital hypotension predicts inhospital mortality. Ann Emerg Med. 2004; 43:106–13.
12 12 Lipsky AM, Gausche‐Hill M, Henneman PL, et al. Prehospital hypotension is a predictor of the need for an emergent, therapeutic operation in trauma patients with normal systolic blood pressure in the emergency department. J Trauma. 2006; 61:1228–33.
13 13 Shapiro NI, Kociszewski C, Harrison T, Chang Y, Wedel SK, Thomas SH. Isolated prehospital hypotension after traumatic injuries: a predictor of mortality? J Emerg Med. 2003; 25:175–9.
14 14 Knopp R, Claypool R, Leonardi D. Use of the tilt test in measuring acute blood loss. Ann Emerg Med. 1980; 9:72–5.
15 15 Schriger DL, Baraff LJ. Capillary refill––is it a useful predictor of hypovolemic states? Ann Emerg Med. 1991; 20:601–5.
16 16 Moscati R, Billittier AJ, Marshall B, Fincher M, Jehle D, Braen GR. Blood loss estimation by out‐of‐hospital emergency care providers. Prehosp Emerg Care. 1999; 3:239–42.
17 17 Kober A, Schubert B, Bertalanffy P, et al. Capnography in non‐tracheally intubated emergency patients as an additional tool in pulse oximetry for prehospital monitoring of respiration. Anesth Anal. 2004; 98:206–10.
18 18 Deakin CD, Sado DM, Coats TJ, Davies G. Prehospital end‐tidal carbon dioxide concentration and outcome in major trauma. J Trauma. 2004; 57):65–8.
19 19 Dubin A, Murias G, Estenssoro E, et al. End‐tidal CO2 pressure determinants during hemorrhagic shock. Intensive Care Med. 2000; 26:1619–23.
20 20 Tyburski JG, Carlin AM, Harvey EH, Steffes C, Wilson RF. End‐tidal CO2‐arterial CO2 differences: a useful intraoperative mortality marker in trauma surgery. J Trauma. 2003; 55:892–6.
21 21 Wilson RF, Tyburski JG, Kubinec SM, et al. Intraoperative end–tidal carbon dioxide levels and derived calculations correlated with outcome in trauma patients. J Trauma. 1996; 41:606–11.
22 22 Davis DP, Dunford JV, Ochs M, Park K, Hoyt DB. The use of quantitative end‐tidal capnometry to avoid inadvertent severe hyperventilation in patients with head injury after paramedic rapid sequence intubation. J Trauma. 2004; 56:808–14.
23 23 Davis DP, Dunford JV, Poste JC, et al. The impact of hypoxia and hyperventilation on outcome after paramedic rapid sequence intubation of severely head–injured patients. J Trauma. 2004; 57:1–8.
24 24 Silvestri S, Ralls GA, Krauss B, et al. The effectiveness of out‐of‐hospital use of continuous end‐tidal carbon dioxide monitoring on the rate of unrecognized misplaced intubation within a regional emergency medical services system. Ann Emerg Med. 2005; 45:497–503.
25 25 Idris AH, Staples ED, O’Brien DJ, et al. Effect of ventilation on acid‐base balance and oxygenation in low blood‐flow states. Crit Care Med. 1994; 22:1827–34.
26 26 Idris AH, Staples ED, O’Brien DJ, et al. End‐tidal carbon dioxide during extremely low cardiac output. Ann Emerg Med 1994; 23:568–72.
27 27 Kupnik D, Skok P. Capnometry in the prehospital setting: are we using its potential? Emerg Med J 2007; 24:614–17.
28 28 Plummer D, Heegaard W, Dries D, Reardon R, Pippert G, Frascone RJ. Ultrasound in HEMS: its role in differentiating shock states. Air Med J. 2003; 22:33–6.
29 29 Mtaweh H, Trakas EV, Su E, Carcillo JA, Aneja RK. Advances in monitoring and management of shock. Pediatr Clin North Am. 2013; 60:641–54.
30 30 Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004; 32:1637–42.
31 31 Galvagno SM, Jr., Sikorski RA, Floccare DJ, et al. Prehospital point of care testing for the early detection of shock and prediction of lifesaving interventions. Shock. 2020; 54(6):710–16.
32 32 Guyette F, Suffoletto B, Castillo JL, Quintero J, Callaway C, Puyana JC. Prehospital serum lactate as a predictor of outcomes in trauma patients: a retrospective observational study. J Trauma. 2011; 70:782–6.
33 33 Gregg A, Tutek J, Leatherwood MD, et al. Systematic review of community paramedicine and EMS mobile integrated health care interventions in the United States. Popul Health Manag. 2019; 22:213–22.
34 34 Stewart J, Sprivulis P, Dwivedi G. Artificial intelligence and machine learning in emergency medicine. Emerg Med Australas. 2018; 30:870–4.
35 35 Moranville MP, Mieure KD, Santayana EM. Evaluation and management of shock States: hypovolemic, distributive, and cardiogenic shock. J Pharm Pract. 2011; 24:44–60.
36 36 Stern SA, Dronen SC, Birrer P, Wang X. Effect of blood pressure on hemorrhage volume and survival in a near‐fatal hemorrhage model incorporating a vascular injury. Ann Emerg Med 1993; 22:155–63.
37 37 Alderson P, Bunn F, Lefebvre C, et al. Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev. 2002; ( 1):CD001208.
38 38 Elbers PW, Ince C. Mechanisms of critical illness: classifying microcirculatory flow abnormalities in distributive shock. Crit Care. 2006; 10:221.
39 39 Patel GP, Grahe JS, Sperry M, et al. Efficacy and safety of dopamine versus norepinephrine in the management of septic shock. Shock. 2010; 33:375–80.
40 40 De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010; 362:779–89.
41 41 Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol. 2017; 140:335–48.
42 42 Shaker M, Kanaoka T, Feenan L, Greenhawt M. An economic evaluation of immediate vs non‐immediate activation of emergency medical services after epinephrine use for peanut‐induced anaphylaxis. Ann Allergy Asthma Immuno. 2019; 122:79–85.
43 43 Simons KJ, Simons FE. Epinephrine and its use in anaphylaxis: current issues. Curr Opin Allergy Clin Immunol. 2010; 10:354–61.
44 44 Simons FER, Simons KJ. Epinephrine (adrenaline) in anaphylaxis. Chem Immunol Allergy. 2010; 95:211–22.
45 45 Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. N Engl J Med. 1999; 341:625–34.
46 46 Aneja RK, Carcillo JA. Differences between adult and pediatric septic shock. Minerva Anestesiol. 2011; 77:986–92.
47 47 Kissoon N, Orr RA, Carcillo JA. Updated American College of Critical Care Medicine––pediatric advanced life support guidelines for management of pediatric and neonatal septic shock: relevance to the emergency care clinician. Pediatr Emerg Care 2010; 26:867–9.
48 48 O’Connor RE, Domeier RM. An evaluation of the pneumatic anti–shock garment (PASG) in various clinical settings. Prehosp Emerg Care. 1997; 1:36–44.
49 49 Pepe PE, Eckstein M. Reappraising the prehospital care of the patient with major trauma. Emerg Med Clin North Am. 1998; 16:1–15.
50 50 Finfer S, Norton R, Bellomo R, Boyce N, French J, Myburgh J. The SAFE study: saline vs. albumin for fluid resuscitation in the critically ill. Vox Sang. 2004; 87(Suppl 2):123–31.
51 51 Semler MW, Self WH, Rice TW. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018; 378:1951.
52 52 Sperry JL, Guyette FX, Brown JB, et al. Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock. N Engl J Med. 2018; 379:315–26.
53 53 Pusateri AE, Butler FK, Shackelford SA, et al. The need for dried plasma – a national issue. Transfusion 2019; 59(Suppl 2):1587–92.
54 54 Shlaifer A, Siman‐Tov M, Radomislensky I, et al. Prehospital administration of freeze‐dried plasma, is it the solution for trauma casualties? J Trauma Acute Care Surg. 2017; 83:675–82.
55 55 Sunde GA, Vikenes B, Strandenes G, et al. Freeze dried plasma and fresh red blood cells for civilian prehospital hemorrhagic shock resuscitation. J Trauma Acute Care. Surg. 2015; 78(6 Suppl 1):S26–30.
56 56 Bickell WH, Wall MJ, Jr., Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994; 331:1105–9.
57 57 Kaweski SM, Sise MJ, Virgilio RW. The effect of prehospital fluids on survival in trauma patients. J Trauma. 1990; 30:1215–19.
58 58 Kowalenko T, Stern S, Dronen S, Wang X. Improved outcome with hypotensive resuscitation of uncontrolled hemorrhagic shock in a swine model. J Trauma. 1992; 33:349–362.
59 59 Martin RR, Bickell WH, Pepe PE, Burch JM, Mattox KL. Prospective evaluation of preoperative fluid resuscitation in hypotensive patients with penetrating truncal injury: a preliminary report. J Trauma. 1992; 33:354–61.
60 60 Silbergleit R, Satz W, McNamara RM, Lee DC, Schoffstall JM. Effect of permissive hypotension in continuous uncontrolled intra‐abdominal hemorrhage. Acad Emerg Med. 1996; 3:922–6.
61 61 Smith JP, Bodai BI, Hill AS, Frey CF. Prehospital stabilization of critically injured patients: a failed concept. J Trauma. 1985; 25:65–70.
62 62 Spaite DW, Hu C, Bobrow BJ, et al. Association of out‐of‐hospital hypotension depth and duration with traumatic brain injury mortality. Ann Emerg Med. 2017; 70:522–530.e21.
63 63 Fowler R, Gallagher JV, Isaacs SM, Ossman E, Pepe P, Wayne M. The role of intraosseous vascular access in the out‐of‐hospital environment (resource document to NAEMSP position statement). Prehosp Emerg Care. 2007; 11:63–6.
64 64 Yannopoulos D, Tang W, Roussos C, Aufderheide TP, Idris AH, Lurie KG. Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respir Care. 2005; 50:628–35.
65 65 Neumar RW, Otto CW, Link MS, et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010; 122(18 Suppl 3):S729–767.
66 66 Sakr Y, Reinhart K, Vincent JL, et al. Does dopamine administration in shock influence outcome? Results of the Sepsis Occurrence in Acutely ill Patients (SOAP) Study. Crit Care Med. 2006; 34:589–97.
67 67 Hajjar LA, Vincent JL, Barbosa Gomes, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology. 2017; 126:85–93.
68 68 Sims CA, Holena D, Kim P, et al. Effect of low‐dose supplementation of arginine vasopressin on need for blood product transfusions in patients with trauma and hemorrhagic shock: a randomized clinical trial. JAMA Surg. 2019; 154:994–1003.
69 69 Schwartz MB, Ferreira JA, Aaronson PM. The impact of push–dose phenylephrine use on subsequent preload expansion in the ED setting. Am J Emerg Med. 2016; 34:2419–22.
70 70 Nawrocki PS, Poremba M, Lawner BJ. Push dose epinephrine use in the management of hypotension during critical care transport. Prehosp Emerg Care. 2020; 24:188–95.
71 71 Guyette FX, Martin‐Gill C, Galli G, McQuaid N, Elmer J. Bolus dose epinephrine improves blood pressure but is associated with increased mortality in critical care transport. Prehosp Emerg Care. 2019; 23:764–71.
72 72 Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008; 358:111–24.
73 73 Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008; 34:17–60.
74 74 Liu VX, Fielding‐SinghV, Greene JD, et al. The time of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med. 2017; 196:856–63.
75 75 Pantridge JF, Geddes JS. A mobile intensive‐care unit in the management of myocardial infarction. Lancet. 1967; 2(7510):271–3.
76 76 Mattox KL, Bickell W, Pepe PE, Burch J, Feliciano D. Prospective MAST study in 911 patients. J Trauma. 1989; 29:1104–11.
77 77 Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis‐3). JAMA. 2016; 315:801–10.
78 78 Seymour CW, Rea TD, Kahn JM, Walkey AJ, Yealy DM, Angus DC. Severe sepsis in pre‐hospital emergency care: analysis of incidence, care, and outcome. Am J Respir Crit Care Med. 2012; 186:1264–71.
79 79 Suffoletto B, Frisch A, Prabhu A, Kristan J, Guyette FX, Callaway CW. Prediction of serious infection during prehospital emergency care. Prehosp Emerg Care. 2011; 15:325–30.
80 80 Wang HE, Weaver MD, Shapiro NI, Yealy DM. Opportunities for emergency medical services care of sepsis. Resuscitation. 2010; 81:193–7.
81 81 Rivers E, Nguyen B, Havstad S, et al. Early goal‐directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001; 345:1368–77.
82 82 Robson W, Nutbeam T, Daniels R. Sepsis: a need for prehospital intervention? Emerg Med J. 2009; 26:535–8.
83 83 Seymour CW, Carlbom D, Engelberg RA, et al. Understanding of sepsis among emergency medical services: a survey study. J Emerg Med. 2012; 42:666–77.
84 84 Seymour CW, Band RA, Cooke CR, et al. Out‐of‐hospital characteristics and care of patients with severe sepsis: a cohort study. J Crit Care. 2010; 25:553–62.
85 85 Pennsylvania Department of Health, Bureau of Emergency Medical Services. Pennsylvania Statewide Advanced Life Support Protocols. Harrisburg, PA: Department of Health, 2019.
86 86 Olander A, Andersson H, Sundler AJ, Bremer A, Ljungstrom L, Andersson Hagiwara M. Prehospital characteristics among patients with sepsis: a comparison between patients with or without adverse outcome. BMC Emerg Med. 2019; 19:43.
87 87 Grover J, Vacarelli M, Williams J, Cabanas JG. Greater emphasis: Wake County, NC, strives for prehospital recognition and treatment of sepsis. JEMS. 2016; 41:50–3.
88 88 McGillicuddy DC, Tang A, Cataldo L, Gusev J, Shapiro NI. Evaluation of end‐tidal carbon dioxide role in predicting elevated SOFA scores and lactic acidosis. Intern Emerg Med. 2009; 4:41–4.
89 89 Hunter CL, Silvestri S, Dean M, Falk JL, Papa L. End‐tidal carbon dioxide is associated with mortality and lactate in patients with suspected sepsis. Am J Emerg Med. 2013; 31:64–71.
90 90 Green RS, Travers AH, Cain E, et al. Paramedic recognition of sepsis in the prehospital setting: a prospective observational study. Emerg Med Int. 2016; 2016:6717261.
91 91 Baez AA, Cochon L. Acute Care Diagnostics Collaboration: assessment of a Bayesian clinical decision model integrating the Prehospital Sepsis Score and point‐of‐care lactate. Am J Emerg Med. 2016; 34:193–6.
92 92 Shu E, Ives Tallman C, Frye W, et al. Pre‐hospital qSOFA as a predictor of sepsis and mortality. Am J Emerg Med. 2019; 37:1273–8.
93 93 Lane D, Ichelson RI, Drennan IR, Scales DC. Prehospital management and identification of sepsis by emergency medical services: a systematic review. Emerg Med J. 2016; 33:408–13.
94 94 Sethi M, Owyang CG, Meyers C, Parekh R, Shah KH, Manini AF. Choice of resuscitative fluids and mortality in emergency department patients with sepsis. Am J Emerg Med. 2018; 36:625–9.
95 95 Seymour CW, Cooke CR, Heckbert SR, et al. Prehospital intravenous access and fluid resuscitation in severe sepsis: an observational cohort study. Crit Care. 2014; 18:533.
96 96 Schmidt KF, Schwarzkopf D, Baldwin LM, et al. Long‐term courses of sepsis survivors: effects of a primary care management intervention. Am J Med. 2020; 133:381–385.e385.
97 97 Studnek JR, Artho MR, Garner CL, Jr., Jones AE. The impact of emergency medical services on the ED care of severe sepsis. Am J Emerg Med. 2012; 30:51–6.
98 98 Fox CJ, Starnes BW. Vascular surgery on the modern battlefield. Surg Clin North Am. 2007; 87:1193–211, xi.
99 99 Mabry R, McManus JG. Prehospital advances in the management of severe penetrating trauma. Crit Care Med. 2008; 36(7 Suppl):S258–66.
100 100 Alam HB, Uy GB, Miller D, et al. Comparative analysis of hemostatic agents in a swine model of lethal groin injury. J Trauma. 2003; 54:1077–82.
101 101 Achneck HE, Sileshi B, Jamiolkowski RM, Albala DM, Shapiro ML, Lawson JH. A comprehensive review of topical hemostatic agents: efficacy and recommendations for use. Ann Surg. 2010; 251:217–28.
102 102 CRASH‐2 Collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH‐2): a randomised, placebo‐controlled trial. Lancet. 2010; 376(9734):23–32.
103 103 CRASH‐2 Collaborators. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH‐2 randomised controlled trial. Lancet. 2011; 377(9771):1096–101.
104 104 Bickell WH. Are victims of injury sometimes victimized by attempts at fluid resuscitation? Ann Emerg Med. 1993; 22:225–6.
105 105 Henderson RA, Thomson DP, Bahrs BA, Norman MP. Unnecessary intravenous access in the emergency setting. Prehosp Emerg Care. 1998; 2:312–16.
106 106 Sampalis JS, Tamim H, Denis R, et al. Ineffectiveness of on‐site intravenous lines: is prehospital time the culprit? J Trauma. 1997; 43:608–15.
107 107 Seamon MJ, Fisher CA, Gaughan J, et al. Prehospital procedures before emergency department thoracotomy: “scoop and run” saves lives. J Trauma. 2007; 63:113–20.
108 108 Jacobs LM, Sinclair A, Beiser A, D’Agostino RB. Prehospital advanced life support: benefits in trauma. J Trauma. 1984; 24:8–13.