Читать книгу Laboratory Methods for Soil Health Analysis, Volume 2 - Группа авторов - Страница 18
References
Оглавление1 Acosta‐Martínez, V., and Tabatabai, M.A. (2011). Phosphorus cycle enzymes. In R.P. Dick, (ed.), Methods of soil enzymology. Madison, WI: SSSA. doi:10.2136/sssabookser9.c8.
2 Blake, G.R., and Hartge, K.H. (1986). Bulk density. In: A. Klute (ed.), Methods of soil analysis: Part 1. Physical and mineralogical methods (p. 363–382). 2nd ed. Madison, WI: ASA and SSSA.
3 Brevik, E.C. (2018). A brief history of the soil health concept. The Profile. Madison, WI: Soil Science Society of America. Posted 18 Dec. https://profile.soils.org/files/soil‐communication/documents/95_document1_d50a8524‐dbf4‐4856‐8c62‐4a03ede6c3d4.pdf (Accessed 20 Feb. 2020).
4 Bundy, L.G., and Meisinger, J.J. (1994). Nitrogen availability indices. In R.W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, and A. Wollum, (eds.), Methods of soil analysis. Part 2 (p. 951–984). SSSA Book Ser. 5. SSSA, Madison, WI.
5 Buyer, J.S., and Sasser, M. (2012). High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130. doi:10.1016/j.apsoil.2012.06.005
6 Deng, S., and Popova, I. (2011). Carbohydrate hydrolases. In R.P. Dick, (ed.), Methods of soil enzymology (p. 185–209). SSSA, Madison, WI.
7 Emerson, W.W. (1995). Water retention, organic‐C, and soil texture. Aust. J. Soil Res. 33, 241–251. doi:10.1071/SR9950241
8 Fajardo, M., McBratney, A.B., Field, D.J., and Minasny, B. (2016). Soil slaking assessment using image recognition. Soil Tillage Res. 163, 119–129. doi:10.1016/j.still.2016.05.018
9 Franzluebbers, A.J., Wright, S.F., and Stuedemann, J.A. (2000). Soil aggregation and glomalin under pastures in the Southern Piedmont USA. Soil Sci. Soc. Am. J. 64, 1018–1026. doi:10.2136/sssaj2000.6431018x
10 Gee, G.W., and Bauder, J.W. (1986). Particle‐size analysis. In A. Klute, (ed.), Methods of soil analysis. Part 1– Physical and mineralogical methods (p. 493–544). 2nd ed. Madison, WI: ASA and SSSA.
11 Hudson, B.D. (1994). Soil organic matter and available water capacity. J. Soil Water Conserv. 49, 189–194.
12 Ismail, I., Blevins, R.L., and Frye, W.W. (1994). Long‐term notillage effects on soil properties and continuous corn yields. Soil Sci. Soc. Am. J. 58:193–198. doi:10.2136/sssaj1994.03615995005800010028x
13 Karlen, D.L., Wollenhaupt, N.C., Erbach, D.C., Berry, E.C., Swan, J.B., Eash, N.S., and Jordahl, J.L. (1994). Long‐term tillage effects on soil quality. Soil Tillage Res. 32, 313–327. doi:10.1016/0167‐1987(94)00427‐G
14 Karlen, D.L., Stott, D.E., Cambardella, C.A., Kremer, R.J., King, K.W., and McCarty, G.W. (2014). Surface soil quality in five midwestern cropland Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 69, 393–401. doi:10.2489/jswc.69.5.393
15 Kemper, W.D., and Roseneau, R.C. (1986). Aggregate stability and size distribution. In: A. Klute, editor, Methods of soil analysis: Part I. Physical and mineralogical methods (p. 425–442). 2nd ed. Madison, WI: ASA and SSSA.
16 Klute, A. (1986). Water retention: Laboratory methods. In: A. Klute, editor, Methods of soil analysis: Part 1. Physical and mineralogical methods (p. 635–662). 2nd ed. Madison, WI: ASA and SSSA. doi:10.2136/sssabookser5.1.2ed
17 Klose, S., Bilen, S., Tabatabai, M.A., and Dick, W.A. (2011). Sulfur cycle enzymes. In R.P. Dick, (ed.), Methods of soil enzymology (p. 125–159). Madison, WI: SSSA.
18 Knudsen, D., Peterson, G.A., and Pratt, P.F. (1982). Lithium, sodium and potassium. In A.L. Page (ed.), Methods of soil analysis. Part 2. 2nd ed. Madison, WI: ASA and SSSA.
19 Langdale, G.W., Leonard, R.A., and Thomas, A.W. (1985). Conservation practice effects on phosphorus losses from Southern Piedmont watersheds. J. Soil Water Conserv. 40, 157–161.
20 Lindsay, W.L., and Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42, 421–428. doi:10.2136/sssaj1978.03615995004200030009x
21 Marotz, C., Amir, A., Humphrey, G., Gaffney, J., Gogul, G., and Knight, R. (2017). DNA extraction for streamlined metagenomics of diverse environmental samples. Biotech. 62, 290–293. doi:10.2144/000114559
22 Miller, R.O., Gavlak, R., and Horneck, D. (2013). Saturated paste extract for calcium, magnesium, sodium and SAR. In Soil, plant and water methods for the western region (p. 21‐22). 4th ed. WREP‐125. Washington, D.C.: Wetlands Reserve Enhancement Program.
23 Mikha, M.M., and Rice, C.W. (2004). Tillage and manure effects on soil and aggregate‐associated carbon and nitrogen. Soil Sci. Soc. Am. J. 68, 809–816. doi:10.2136/sssaj2004.8090
24 Moebius‐Clune, B.N., Moebius‐Clune, D.J., Gugino, B.K., Idowu, O.J., Schindelbeck, R.R., Ristow, A.J., van Es, H.M., Thies, J.E., Shayler, H.A., McBride, M.B., Kurtz, K.S.M., Wolfe, D.W., and Abawi, G.S. (2016). Comprehensive Assessment of Soil Health– The Cornell Framework, edition 3.2, Cornell University, Geneva, NY. http://soilhealth.cals.cornell.edu/training‐manual/ (Accessed 7 Oct. 2018).
25 Natural Resources Conservation Service (2020). Soil Health. Washington, D.C.: Natural Resources Conservation Service. https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (Accessed 20 Feb. 2020).
26 Nelson, D.W., and Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. In D.L. Sparks, (ed.), Methods of soil analysis: Part 3. Chemical methods (p. 961–1010). Madison, WI: SSSA. doi:10.2136/sssabookser5.3.c34
27 Olness, A., and Archer, D.W. (2005). Effect of organic carbon on available water in soil. Soil Sci. 170, 90–101. doi:10.1097/00010694‐200502000‐00002
28 Olsen, S.R., and Sommers, L.E. (1982). Phosphorus. In A.L. Page, et al., editors, Methods of soil analysis: Part 2. Chemical and microbiological properties (p. 403–430). 2nd ed. Madison, WI: ASA and SSSA.
29 Reynolds, W.D., and Elrick, D.E. (1990). Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Sci. Soc. Am. J. 54, 1233–1241. doi:10.2136/sssaj1990.03615995005400050006x
30 Rhoades, J.D. (1996). Salinity: Electrical conductivity and total dissolved solids. In: D.L. Sparks, editor, Methods of soil analysis: Part 3. Chemical methods (p. 417–435). Madison, WI: SSSA. doi:10.2136/sssabookser5.3.c14
31 Schindelbeck, R.R., Moebius‐Clune, B.N., Moebius‐Clune, D.J., Kurtz, K.S., and van Es, H.M. (2016). Cornell university comprehensive assessment of soil health laboratory standard operating procedures. Ithaca, NY: Cornell University. https://cpb‐us‐e1.wpmucdn.com/blogs.cornell.edu/dist/f/5772/files/2015/03/CASH‐Standard‐Operating‐Procedures‐030217final‐u8hmwf.pdf
32 Sherrod, L.A., Dunn, G., Peterson, G.A., and Kolberg, R.L. (2002). Inorganic carbon analysis by modified pressure‐calcimeter method. Soil Sci. Soc. Am. J. 66, 299–305. doi:10.2136/sssaj2002.2990
33 Sikora, F.S., and Moore, K.P. (2014). Soil test methods from the southeastern United States. Southern Cooperative Series Bulletin 419. Washington, D.C.: Wetlands Reserve Enhancement Partnership.
34 Soil Science Society of America. (2020). The North American Proficiency Test Program. Madison, WI: SSSA. https://www.naptprogram.org/ (Accessed 20 Feb. 2020).
35 Stott, D.E. (2019). Recommended soil health indicators and associated laboratory procedures. Soil Health Technical Note No. 450‐03. Washington, D.C.: U.S. Department of Agriculture, Natural Resources Conservation Service.
36 Tabatabai, M.A. (1994). Soil enzymes. In: R.W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, A. Wollum, (eds.), Methods of soil analysis: Part 2. Microbiological and biochemical properties (p. 775–833). SSSA, Madison, WI.
37 Thomas, G.W. (1996). Soil pH and soil acidity. In D.L. Sparks, editor, Methods of soil analysis: Part 3. Chemical methods (p. 475–490). Madison, WI: SSSA.
38 Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Jansson, J.K., Gilbert, J.A., and Knight, R., and The Earth Microbiome Project Consortium. (2017). A communal catalogue reveals earth’s multiscale microbial diversity. Nature 551, 457–463. doi:10.1038/nature24621
39 Tonitto, C., David, M.B., and Drinkwater, L.E. (2006). Replacing bare fallows with cover crops in fertilizer‐intensive cropping systems: A meta‐analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 112, 58–72. doi:10.1016/j.agee.2005.07.003
40 Ussiri, D.A.N., and Lal, R. (2009). Long‐term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 104, 39–47. doi:10.1016/j.still.2008.11.008
41 Varvel, G.E., and Wilhelm, W.W. (2010). Long‐term soil organic carbon as affected by tillage and cropping systems. Soil Sci. Soc. Am. J. 74, 915–921. doi:10.2136/sssaj2009.0362
42 Veum, K.S., Sudduth, K.E., Kremer, R.J., and Kitchen, N.R. (2015). Estimating a soil quality index with VNIR reflectance spectroscopy. Soil Sci. Soc. Am. J. 79, 637–649. doi:10.2136/sssaj2014.09.0390
43 Wallace, H.A. (1910). Relation between livestock farming and the fertility of the land. Thesis. Ames, IA: Iowa State University. doi:10.31274/rtd‐180813‐7404
44 Wander, M.M., Bidart‐Bouzat, G., and Aref, S. (1998). Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soils. Soil Sci. Soc. Am. J. 62, 1704–1711. doi:10.2136/sssaj1998.03615995006200060031x
45 Weil, R., Islam, K.R., Stine, M.A., Gruver, J.B., and Samson‐Liebig, S.E. (2003). Estimating active carbon for soil quality assessment: A simple method for laboratory and field use. Am. J. Altern. Agric. 18, 3–17. doi:10.1079/AJAA2003003
46 Yoo, K.H., Touchton, J.T., and Walker, R.H. (1988). Runoff, sediment and nutrient losses from various tillage systems of cotton. Soil Tillage Res. 12, 13–24. doi:10.1016/0167‐1987(88)90052‐9
47 Zhu, J.C., Gantzer, C.J., Anderson, S.H., Alberts, E.E., and Buselinck, R.R. (1989). Runoff, soil and dissolved nutrient losses from no‐tillage soybean and winter cover crops. Soil Sci. Soc. Am. J. 53, 1210–1214. doi:10.2136/sssaj1989.03615995005300040037x
48 Zibilske, L. (1994). Carbon mineralization. In: P.J. Bottomley, J.S. Angle, R.W. Weaver, (Eds.), Methods of soil analysis: Part 2. Microbiological and biochemical properties (p. 835–863). Madison, WI: SSSA.