Читать книгу Computational Intelligence and Healthcare Informatics - Группа авторов - Страница 46

2.4 Comparison of Existing Models

Оглавление

In this section, existing models are compared on many different parameters as listed in Table 2.2.

1 Model parameters: type of model used, input image size, number of layers epoch, loss function used, and accuracy.

2 Accuracy achieved for all 14 different pathologies and dataset used for experimentation.

3 Other metrics: model used, specificity, sensitivity, F1-score, precision, and type of pathology detected.

4 On the basis of hardware and software used and input image size.

Table 2.2 shows datasets and pathologies detected by various DL models. It is observed that ChestX-ray14 is the most preferred dataset which can be used for training and testing of newly implemented models in the future. Cardiomegaly and Edema are easy to detect as compared to other pathologies because of their spatially spread out symptom. In addition, Table 2.3 shows comparison among different models on the basis of AUC score for 14 different chest pathologies. It is observed that cardiomegaly is having the highest value of AUC score obtained by most ensemble models. Edema, Emphysema, and Hernia are the pathologies following cardiomegaly which are having better AUC. CheXNext [59] is able to detect Mass, Pneumothorax, and Edema more accurately which other models cannot detect.

Table 2.4 highlights the comparison between various models on the basis of other performance measure. Most of the models have used accuracy, F1-score, specificity, sensitivity, and PPV and NPV parameters for comparison with other models. Pre-trained networks like AlexNet, VGG16, VGG19, DenseNet, and ResNet121 trained from scratch achieved better accuracy than those whose parameters are initialized from ImageNet because ImageNet has altogether different features than CXR images.

Table 2.5 shows hardware used by different models along with size of input image in terms of pixels and datasets used. Due to computationally intensive task, high definition hardware of NVIDIA card with larger size RAM has been used.

Table 2.2 Comparison of different deep learning models.

Ref. Model used Dataset No. layers Epoch Activation function Iterations Pathology detected
[23] DenseNet-121 ChestX-ray14 121 - Softmax 50,000 14 chest pathologies
[67] Pretrained CNNs: ChestX-ray14 - 50 - - 14 chest pathologies
[7] VDSNet ChestX-ray8 - - ReLU - Pulmonary diseases
[10] DualCheXNet ChestX-ray14 169 - ReLU - 14 chest pathologies
[2] CNN ChestX-ray8 5 1,000–4,000 ReLU 40,000 12 chest pathologies out of 14
BPNN 3 - 5,000
CpNN 2 - 1,000
[8] Customized U-Net ChestX-ray8 35 100–200 ReLU 20 Cardiomegaly
[47] Ensemble of DesnSeNet-121, DenseNet-169, DenseNet-201, Inception-ResNet-v2 Xception, NASNetLarge CheXpert 5 Sigmoid 50,000 Only 5 pathologies: Atelactasis, Cardiomegaly, Pleural, Effusion, and Edema
[51] STN based CNN Lung ultrasonography videos - - ReLU - COVID-19 Pneumonia
[46] Ensemble with AlexNet NIH Tuberculosis Chest X-ray dataset [10.31] and Belarus Tuberculosis Portal dataset [10.32] - - ReLU - Tuberculosis
[26] FHRNet ChestX-ray14 dataset - 50 Sigmoid - 14 chest pathologies
[20] AG-CNN ChestX-ray14 50 Sigmoid - 14 chest pathologies
[53] preact-ResNet [39_chp7_14] ChestX-ray14 - - Sigmoid - 8 chest pathologies out of 14
[70] Unified DCNN ChestX-ray8 - - Sigmoid - 8 chest pathologies out of 14
[28] Ensemble of AlexNet, VGG-16, VGG-19, ResNet-50, ResNet-101 and ResNet-152 Indiana dataset - - - - Cardiomegaly, Edema, and Tuberculosis
[5] ChestNet CNN ChestX-ray14 14 30 Consolidation
[49] CheXNeXt CNN ChestX-ray14 14 chest pathologies
[46] Customized CNN NIH Tuberculosis Chest X-ray, Belarus Tuberculosis 23 ReLU Tuberculosis
[61] Ensemble of RetinaNet and Mask R-CNN Kaggle dataset RSNA - - ReLU - Pneumonia
[45] DarkCovid-Net COVID Chest x-ray Kaggle 17 ReLU - COVID, Normal and Pneumonia
[65] GoogLeNet St. Michael’s Hospital chest x-ray - 60 ReLU - 5 pathologies: Cardiomegaly, Edema, Pleural effusion, pneumothorax, and consolidation
[35] Ensemble of AlexNet and GoogleNet NIH Tuberculosis Chest X-ray, Belarus Tuberculosis - - - - Tuberculosis
[31] ResNet101 Cohen and Kaggle [3] - - - - COVID-19–induced pneumonia

Table 2.3 Comparison of models on the basis of AUC score for 14 chest pathologies.

Ref. Atel Card Effu Infi Mass Nodu Pne1 Pnet Cons Edem Emph Fibr PT Hern
[10] 0.784 0.888 0.831 0.705 0.838 0.796 0.727 0.876 0.746 0.852 0.942 0.837 0.796 0.912
[23] 0.795 0.887 0.875 0.703 0.835 0.716 0.742 0.863 0.786 0.892 0.875 0.756 0.774 0.836
[70] 0.716 0.807 0.784 0.609 0.706 0.671 0.633 0.806 0.708 0.835 0.815 0.769 0.708 0.767
[69] 0.743 0.875 0.811 0.677 0.783 0.698 0.696 0.81 0.723 0.833 0.822 0.804 0.751 0.899
[8] - 0.940 - - - - - - - - - - - -
[47] 0.909 0.910 0.964 - - - - - 0.957 0.958 - - - -
[26] 0.794 0902 0.839 0.714 0.827 0.727 0.703 0.848 0.773 0.834 0.911 0.824 0.752 0.916
[20] 0.853 0.939 0.903 0.754 0.902 0.828 0.774 0.921 0.842 0.924 0.932 0.964 0.837 0.921
[74] AlexNet 0.645 0.692 0.664 0.604 0.564 0.648 0.549 0.742 - - - - - -
GoogleNet 0.631 0.706 0.688 0.609 0.536 0.558 0.599 0.782 - - - - - -
VGGNet-16 0.628 0.708 0.650 0.589 0.510 0.656 0.510 0.751 - - - - - -
ResNet50 0.707 0.814 0.736 0.613 0.561 0.716 0.63 0.789 - - - - - -
[41] 0.762 0.883 0.816 0.679 0.801 0.729 0.709 0.838 0.744 0.841 0.884 0.800 0.754 0.876
[49] 0.862 0.831 0.901 0.721 0.909 0.894 0.851 0.944 0.893 0.924 0.704 0.806 0.798 0.851
[13] - 0.875 0.962 - - - - 0.861 0.850 0.868 - - - -

Table 2.4 Comparison of DL models on the basis of different performance metrics.

Ref. Model Accuracy F1-Score Specificity Sensitivity PPV NPV AUC Recall Precision
[23] DenseNet121 0.572–0.842 0.574 –0.942 - - - - - - -
[67] AlexNet (S) 0.9684 0.9023 87.99 92.65 87.94 90.68 - - -
VGG16 (S) 0.9742 0.9228 91.46 93.42 91.18 93.63 - - -
VGG19 (S) 0.9757 0.9161 88.86 94.49 88.90 94.46 - - -
DenseNet121(S) 0.9801 0.9248 90.01 95.10 90.00 95.11 - - -
ResNet18 (S) 0.9766 0.9099 85.09 96.63 85.97 96.52 - - -
Inceptionv3(S) 0.9796 0.9225 89.58 95.08 89.58 95.08 - - -
ResNet50 (S) 0.9775 0.9233 90.59 94.32 90.43 94.42 - - -
[7] VDSNet 0.73 0.68 - - - - 0.74 0.63 0.69
[10] DualCheXNet - - - - - - 0.823 - -
[2] CNN 0.9240 - - - - - - - -
BPNN 0.8004 - - - - - - - -
CpNN 0.8957 - - - - - - - -
[8] U-Net 0.94 - - - - - - - -
[47] Ensemble CNN 0.940
[51] STN based CNN 0.96 0.651 - - - - - 0.60 0.70
[46] Ensemble with AlexNet 0.862 0.925
[26] FHRNet - - - - - - 0.812 - -
[20] AG-CNN - - - - - - 0.871 - -
[28] Ensemble DCNN (for Cardiomegaly) 0.93 - 92.00 94.00 - - 0.97 - -
Ensemble DCNN (for Tuberculosis) 0.90 - 92.00 88.00 - - 0.94 - -
[41] MA-DCNN - - - - - - 0.794 - -
[5] ChestNet 0.932 - - 97.13 85.85 - 0.984 - -
[46] CNN Maryland (MC) dataset 0.79 - - - - - 0.811 - -
Shenzhen (SZ) 0.844 - - - - - 0.900 - -
Combined (CB) 0.862 - - - - - 0.925 - -
[61] Kaggle PSNA - 0.755 - - - - - 0.793 0.758
[45] DarkCovidNet 0.981 94.17 99.61 90.65 - - - - 0.979
[13] GoogleNet (for normal class) - - 91.00 91.00 - - 0.964 - -
[4] DecafCNN [78] - - 78.00 84.00 - - 87.00 - -
[35] Ensemble DCNN - - - - - - 0.99 - -
[31] ResNet101 0.989 98.15 98.66 98.93 - - - - 0.964

Table 2.5 Models with hardware used and time required for training.

Ref. Dataset Hardware and software platform used Input image size Time required for training
[47] CheXpert NVIDIA Geforce RTX 2080 Ti with 11GB memory. Python with Keras and TensorFlow 224 × 224 pixels -
[51] Lung ultrasonography videos from Italy RTX-2080 NVIDIA GPU 1,005 frames 11 hours
[46] NIH Tuberculosis Chest X-ray dataset [18] and Belarus Tuberculosis Portal dataset [21] Nvidia GeForce GTX 1050 Ti 512 × 512 5–6 ms
[26] ChestX-ray14 dataset 8-core CPU and four TITAN V GPUs Pytorch 1.0 framework in Python 3.6 on an Ubuntu 16.04 server 224 × 224 -
[20] ChestX-ray14 dataset NVIDIA TITAN Xp GPUs Pytorch 224 × 224 6 hours
[70] ChestX-ray14 dataset Dev-Box linux server with 4 Titan X GPUs 224 × 224 -
[5] ChestX-ray14 dataset Intel Core(TM) i7-6850k CPU 3.60GHz processor, 4TB of hard disk space, 7889 MB of RAM, and a CUDA-enabled NVidia Titan 11 GB graphics processing unit with python and Keras library on TensorFlow 224 × 224 -
[49] ChestX-ray8 NVIDIA GeForce GTX TITAN and PyTorch 512 × 512 20 hours
[46] NIH Tuberculosis Chest X-ray [18], Belarus Tuberculosis [A6] Nvidia GeForce GTX 1050 Ti 512 × 512 1 hour
[61] Kaggle PSNA Nvidia Tesla V100 and Nvidia K80 and Keras library of Python 512 × 512 7 hours
[13] St. Michael’s Hospital chest x-ray 3 NVIDIA Titan X 12GB GPUs 256 × 256 1 hour
[35] NIH Tuberculosis Chest X-ray [18], Belarus Tuberculosis [A6] Intel i5 processor with 32 GB of RAM, and a CUDA-enabled Nvidia Titan 312 GB GPU 256 × 256 -

Computational Intelligence and Healthcare Informatics

Подняться наверх