Читать книгу Magma Redox Geochemistry - Группа авторов - Страница 56
REFERENCES
Оглавление1 Allen, W., & Snow, R. (1955). The orthosilicate‐iron oxide portion of the system CaO‐“FeO”‐SiO2. Journal of the American Ceramic Society, 38(8), 264–272.
2 Anderson, A. T., & Wright, T. L. (1972). Phenocrysts and glass inclusions and their bearing on oxidation and mixing of basaltic magmas, Kilauea Volcano, Hawaii. American Mineralogist, 57(1–2), 188–216.
3 Andreani, M., Munoz, M., Marcaillou, C., & Delacour, A. (2013). u‐XANES study of iron redox state in serpentine during oceanic serpentinization. Lithos, 178, 70–83. doi: 10.1016/j.lithos.2013.04.008
4 Arce, J. L., Gardner, J. E., & Macias, J. L. (2013). Pre‐eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico. Journal of Volcanology and Geothermic Research, 249, 49–65. doi: 10.1016/j.jvolgeores.2012.09.012
5 Bacon, C. R., & Hirschmann, M. M. (1988). Mg/Mn Partitioning as a Test for Equilibrium between Coexisting Fe‐Ti Oxides. American Mineralogist, 73(1–2), 57–61.
6 Baggerman, T. D., & DeBari, S. M. (2011). The generation of a diverse suite of Late Pleistocene and Holocene basalt through dacite lavas from the northern Cascade arc at Mount Baker, Washington. Contributions to Mineralogy and Petrology, 161(1), 75–99. doi: 10.1007/s00410‐010‐0522‐2
7 Bali, E., Keppler, H., & Audetat, A. (2012). The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth and Planetary Science Letters, 351–352, 195–207. doi: 10.1016/j.epsl.2012.07.032
8 Ballhaus, C. (1993). Redox States of Lithospheric and Asthenospheric Upper‐Mantle, Contributions to Mineralogy and Petrology, 114(3), 331–348.
9 Ballhaus, C., Berry, R. F., & Green, D. H. (1991). High‐pressure experimental calibration of the olivine‐ortho‐pyroxene‐spinel oxygen geobarometer ‐ implications for the oxidation‐state of the upper mantle. Contributions to Mineralogy and Petrology, 107(1), 27–40.
10 Basaltic Volcanism Study Project. (1981). Basaltic volcanism of the terrestrial planets, New York: Pergamon Press Inc. 1286 pp.
11 Behn, M. D., & Grove, T. L. (2015). Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness. Journal of Geophysical Research: Solid Earth, 120(7), 4863–4886.
12 Beier, C., Haase, K. M., & Hansteen, T. H. (2006). Magma evolution of the Sete Cidades volcano, Sao Miguel, Azores. Journal of Petrology, 47(7), 1375–1411. doi: 10.1093/petrology/egl014
13 Benard, A., Klimm, K., Woodland, A. B., Arculus, R. J., Wilke, M., Botcharnikov, R. E., et al. (2018). Oxidising agents in sub‐arc mantle melts link slab devolatilisation and arc magmas. Nature Communications, 9. doi: 10.1038/s41467‐018‐05804‐2.
14 Bénard, A., Woodland, A. B., Arculus, R. J., Nebel, O., & McAlpine, S. R. B. (2018). Variation in sub‐arc mantle oxygen fugacity during partial melting recorded in refractory peridotite xenoliths from the West Bismarck Arc. Chemical Geology, 486, 16–30. doi: 10.1016/j.chemgeo.2018.03.004
15 Berry, A. J., Stewart, G. A., O'Neill, H. S. C., Mallmann, G., & Mosselmans, J. F. W. (2018). A re‐assessment of the oxidation state of iron in MORB glasses. Earth and Planetary Science Letters, 483, 114–123. doi: https://doi.org/10.1016/j.epsl.2017.11.032
16 Bezos, A., Guivel, G., La, C., Fougeroux, T., & Humler, E. (2021). Unraveling the confusion over the iron oxidation state in MORB glasses. Geochimica et Cosmochimica Acta, 293, 28–39. doi: https://doi.org/10.1016/j.gca.2020.10.004
17 Bezos, A., & Humler, E. (2005). The Fe3+/Sigma Fe ratios of MORB glasses and their implications for mantle melting. Geochimica et Cosmochimica Acta, 69(3), 711–725.
18 Birner, S. K., Cottrell, E., Warren, J. M., Kelley, K. A., & Davis, F. A. (2018). Peridotites and basalts reveal broad congruence between two independent records of mantle fO2 despite local redox heterogeneity. Earth and Planetary Science Letters, 494, 172–189.
19 Birner, S. K., Warren, J. M., Cottrell, E., Davis, F. A., Kelley, K. A., & Falloon, T. J. (2017). Forearc peridotites from Tonga record heterogeneous oxidation of the mantle following subduction initiation. Journal of Petrology, 58(9), 1755–1780.
20 Bonadiman, C., Beccaluva, L., Coltorti, M., & Siena, F. (2005). Kimberlite‐like metasomatism and ‘garnet signature’in spinel‐peridotite xenoliths from Sal, Cape Verde Archipelago: relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere? Journal of Petrology, 46(12), 2465–2493.
21 Bonnin‐Mosbah, M., Simionovici, A. S., Metrich, N., Duraud, J. P., Massare, D., & Dillmann, P. (2001). Iron oxidation states in silicate glass fragments and glass inclusions with a XANES micro‐probe. Journal of Non‐Crystalline Solids, 288(1–3), 103–113.
22 Borisov, A., Behrens, H., & Holtz, F. (2018). Ferric/ferrous ratio in silicate melts: a new model for 1 atm data with special emphasis on the effects of melt composition. Contributions to Mineralogy and Petrology, 173(12), doi: 10.1007/s00410‐018‐1524‐8
23 Bowen, N. L., & Schairer, J. F. (1932). The System, FeO‐SiO2, American Journal of Science, 24(141), 177–213.
24 Brandon, A. D., & Draper, D. S. (1996). Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Washington, USA. Geochimica et Cosmochimica Acta, 60(10), 1739–1749.
25 Brounce, M., Kelley, K., & Cottrell, E. (2014). Variations in Fe3+/∑ Fe of Mariana arc basalts and mantle wedge fO2. Journal of Petrology, 55(12), 2513–2536.
26 Brounce, M., Reagan, M., Kelley, K. A., Cottrell, E., Shimizu, K., & Almeev, R. (2021). Co‐variation of slab tracers, volatiles, and oxidation during subduction initiation. Geochemistry, Geophysics, Geosystems. doi: https://doi.org/10.1029/2021GC009823
27 Brounce, M., Stolper, E., & Eiler, J. (2017). Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 114(34), 8997–9002. doi: https://10.1073/pnas.1619527114
28 Brounce, M., Cottrell, E., & Kelley, K. A. (2019). The redox budget of the Mariana subduction zone. Earth and Planetary Science Letters, 528. doi: Doi.org/10.1016/j.epsl.2019.115859
29 Brounce, M., Kelley, K. A., Cottrell, E., & Reagan, M. K. (2015). Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology, 43(9), 775–778. doi: 10.1130/G36742.1
30 Browne, B., Izbekov, P., Eichelberger, J., & Churikova, T. (2010). Pre‐eruptive storage conditions of the Holocene dacite erupted from Kizimen Volcano, Kamchatka. International Geology Review, 52(1), 95–110. doi: 10.1080/00206810903332413
31 Bryndzia, L. T., & Wood, B. J. (1990). Oxygen thermobarometry of abyssal spinel peridotites ‐ The redox state and C‐O‐H volatile composition of the Earth's sub‐oceanic upper mantle. American Journal of Science, 290(10), 1093–1116.
32 Bucholz, C. E., & Kelemen, P. B. (2019). Oxygen fugacity at the base of the Talkeetna arc, Alaska. Contributions to Mineralogy and Petrology, 174(10). doi: 10.1007/s00410‐019‐1609‐z
33 Buddington, A., & Lindsley, D. (1964). Iron‐titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5(2), 310–357.
34 Burgisser, A., Alletti, M., & Scaillet, B. (2015). Simulating the behavior of volatiles belonging to the C–O–H–S system in silicate melts under magmatic conditions with the software D‐Compress. Computers & Geosciences, 79, 1–14. doi: 10.1016/j.cageo.2015.03.002
35 Calvert, A. J., Klempere, S. L., Takahashi, N., & Kerr, B. C. (2008). Three‐dimensional crustal structure of the Mariana island arc from seismic tomography. Journal of Geophysical Research, 113, B01406.
36 Canil, D. (1990). Experimental study bearing on the absence of carbonate in mantle‐derived xenoliths. Geology, 18, 1011–1013.
37 Canil, D. (1997). Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature, 389(6653), 842–845.
38 Canil, D. (2002). Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth and Planetary Science Letters, 195(1–2), 75–90.
39 Canil, D., & Fellows, S. A. (2017). Sulphide–sulphate stability and melting in subducted sediment and its role in arc mantle redox and chalcophile cycling in space and time. Earth and Planetary Science Letters, 470, 73–86. doi: 10.1016/j.epsl.2017.04.028
40 Carmichael, I. S. E. (1967). The mineralogy of thingmuli, a tertiary volcano in Eastern Iceland. American Mineralogist, 52, 1815–1841.
41 Carmichael, I. S. E. (1991). The redox states of basic and silicic magmas ‐ a reflection of their source regions. Contributions to Mineralogy and Petrology, 106(2), 129–141.
42 Carmichael, I. S. E., & Nicholls, J. (1967). Iron‐titanium oxides and oxygen fugacities in volcanic rocks. Journal of Geophysical Research, 72(18), 4665–4687.
43 Carmichael, I. S. E., & Ghiorso, M. S. (1986). Oxidation‐reduction relations in basic magma ‐ a case for homogeneous equilibria. Earth and Planetary Science Letters, 78(2–3), 200–210.
44 Carroll, M. R., & Rutherford, M. J. (1988). Sulfur Speciation in Hydrous Experimental Glasses of Varying Oxidation‐State ‐ Results from Measured Wavelength Shifts of Sulfur X‐Rays. American Mineralogist, 73(7–8), 845–849.
45 Chin, E. J., Shimizu, K., Bybee, G. M., & Erdman, M. E. (2018). On the development of the calc‐alkaline and tholeiitic magma series: A deep crustal cumulate perspective. Earth and Planetary Science Letters, 482, 277–287. doi: 10.1016/j.epsl.2017.11.016
46 Christie, D. M., Carmichael, I. S. E., & Langmuir, C. H. (1986). Oxidation‐states of Midocean Ridge basalt glasses. Earth and Planetary Science Letters, 79(3–4), 397–411.
47 Chulick, G. S., Detweiler, S., & Mooney, W. D. (2013). Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. Journal of South American Earth Sciences, 42, 260–276. doi: 10.1016/j.jsames.2012.06.002
48 Coombs, M. L., & Gardner, J. E. (2001). Shallow‐storage conditions for the rhyolite of the 1912 eruption at Novarupta, Alaska. Geology, 29(9), 775–778. doi: 10.1130/0091‐7613(2001)029<0775:sscftr>2.0.co;2.
49 Cottrell, E., & Kelley, K. A. (2011). The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305(3–4), 270–282. doi: 10.1016/j.epsl.2011.03.014
50 Cottrell, E., Kelley, K. A., Lanzirotti, A., & Fischer, R. A. (2009). High‐precision determination of iron oxidation state in silicate glasses using XANES. Chemical Geology, 268(3–4), 167–179. doi: 10.1016/j.chemgeo.2009.08.008
51 Cottrell, E., Birner, S. K., Brounce, M., Davis, F. A., Waters, L. E., & Kelley, K. A. (2021). Oxygen Fugacity Across Tectonic Settings, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). http://doi.org/10.26022/IEDA/111899
52 Cottrell, E., Lanzirotti, A., Mysen, B., Birner, S., Kelley, K. A., Botcharnikov, R., et al. (2018). A Mössbauer‐based XANES calibration for hydrous basalt glasses reveals radiation‐induced oxidation of Fe. American Mineralogist: Journal of Earth and Planetary Materials, 103(4), 489–501.
53 Crabtree, S., & Lange, R. (2011). An evaluation of the effect of degassing on the oxidation state of hydrous andesite and dacite magmas: a comparison of pre‐ and post‐eruptive Fe2+ concentrations. Contributions to Mineralogy and Petrology, 163, 209–224. doi: 10.1007/s00410‐011‐0667‐7
54 Crabtree, S. M., & Lange, R. A. (2011). Complex phenocryst textures and zoning patterns in andesites and dacites: Evidence of degassing‐induced rapid crystallization? Journal of Petrology, 52(1), 3–38. doi: 10.1093/petrology/egq067
55 Crabtree, S. M., & Waters, L. E. (2017). The petrologic history of the Sanganguey volcanic field, Nayarit, Mexico: Comparisons in a suite of crystal‐rich and crystal‐poor lavas. Journal of Volcanology and Geothermic Research, 336, 51–67. doi: 10.1016/j.jvolgeores.2017.02.005.
56 Darbyshire, F. A., White, R. S., & Priestley, K. F. (2000). Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study. Earth and Planetary Science Letters, 181, 409–428.
57 Das, T., & Nolet, G. (1998). Crustal thickness map of the western United States by partitioned waveform inversion. Journal of Geophysical Research: Solid Earth, 103(B12), 30021–30038.
58 Dasgupta, R., Jackson, M. G., & Lee, C.‐T. A. (2010). Major element chemistry of ocean island basalts – Conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters, 289(3–4), 377–392.
59 Dauphas, N., Craddock, P. R., Asimow, P. D., Bennett, V. C., Nutman, A. P., & Ohnenstetter, D. (2009). Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth and Planetary Science Letters, 288(1–2), 255–267.
60 Davis, F. A., & Cottrell, E. (2018). Experimental investigation of basalt and peridotite oxybarometers: implications for spinel thermodynamic models and Fe3+ compatibility during generation of upper mantle melts. American Mineralogist, 103(7), 1056–1067. doi: http://doi.org/10.2138/am‐2018‐6280
61 Davis, F. A., Humayun, M., Hirschmann, M. M., & Cooper, R. S. (2013). Experimentally determined mineral/melt partitioning of first‐row transition elements (FRTE) during partial melting of peridotite at 3GPa, Geochimica et Cosmochimica Acta, 104, 232–260. doi: 10.1016/j.gca.2012.11.009
62 Davis, F. A., Cottrell, E., Birner, S. K., Warren, J. M., & Lopez, O. G. (2017). Revisiting the electron microprobe method of spinel‐olivine‐orthopyroxene oxybarometry applied to spinel peridotites. American Mineralogist, 102(2), 421–435.
63 Debret, B., Andreani, M., Muñoz, M., Bolfan‐Casanova, N., Carlut, J., Nicollet, C., et al. (2014). Evolution of Fe redox state in serpentine during subduction. Earth and Planetary Science Letters, 400, 206–218. doi: 10.1016/j.epsl.2014.05.03
64 Devine, J. D., Rutherford, M. J., Norton, G. E., & Young, S. R. (2003). Magma storage region processes inferred from geochemistry of Fe‐Ti oxides in andesitic magma, Soufriere Hills Volcano, Montserrat, WI. Journal of Petrology, 44(8), 1375–1400. doi: 10.1093/petrology/44.8.1375
65 El‐Rus, M. A. A., Neumann, E. R., & Peters, V. (2006). Serpentinization and dehydration in the upper mantle beneath Fuerteventura (eastern Canary Islands): Evidence from mantle xenoliths. Lithos, 89(1), 24–46.
66 Elliott, T., Plank, T., Zindler, A., White, W., & Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Solid Earth, 102(B7), 14991–15019.
67 Eugster, H. (1957). Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. The Journal of Chemical Physics, 26(6), 1760–1761.
68 Eugster, H. P. (Ed.) (1959). Oxidation and reduction in metamorphism, New York: John Wiley & Sons. 397–426 pp.
69 Evans, K. A. (2021), Redox decoupling, redox budgets and magma recycling. In: D. R. Neuville and R. Moretti, (eds.) AGU Geophysical Monograph Redox variables and mechanisms in magmatism and volcanism. Wiley.
70 Evans, K. A., & Tomkins, A. G. (2011). The relationship between subduction zone redox budget and arc magma fertility. Earth and Planetary Science Letters, 308, 401–409. doi: 10.1016/j.epsl.2011.06.009
71 Evans, K. A., Elburg, M. A., & Kamenetsky, V. S. (2012). Oxidation state of subarc mantle. Geology, 40(9), 783–786. doi: 10.1130/g33037.1
72 Ewart, A. (1979). A review of the mineralogy and chemistry of Tertiary‐recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. Developments in Petrology, 6, 13–121.
73 Farner, M. J., & Lee, C.‐T. A. (2017). Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth and Planetary Science Letters, 470, 96–107. doi: 10.1016/j.epsl.2017.04.025
74 Farnetani, C. G., & Hofmann, A. W. (2010). Dynamics and internal structure of the Hawaiian plume. Earth and Planetary Science Letters, 295(1–2), 231–240. doi: 10.1016/j.epsl.2010.04.005
75 Ferrari, L., Orozco‐Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans‐Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522, 122–149. doi: 10.1016/j.tecto.2011.09.018
76 Finotello, M., Nyblade, A., Julià, J., Wiens, D. A., & Anandakrishnana, S. (2011). Crustal Vp‐Vs ratios and thicknesses for Ross Island and the Transantarctic Mountain front, Antarctica. Geophysical Journal International, 185, 85–92.
77 Fleet, M. E., Liu, X., Harmer, S. L., & King, P. L. (2005). Sulfur K‐edge XANES spectroscopy: Chemical state and content of sulfur in silicate glasses. The Canadian Mineralogist, 43(5), 1605–1618.
78 Foden, J., Sossi, P. A., & Nebel, O. (2018). Controls on the iron isotopic composition of global arc magmas. Earth and Planetary Science Letters, 494, 190–201. doi: 10.1016/j.epsl.2018.04.039
79 French, S. W., & Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525, 95–99. doi: 10.1038/nature14876
80 Frey, F., & Roden, M. F. (1987). The mantle source for Hawaiian Islands. Constraints from the lavas and ultramafic inclusions. In: Menzies, M. A., & Hawkesworth, C. J. (Eds.) Mantle Metasomatism. London: Academic Press. pp. 423–463.
81 Frey, H. M., & Lange, R. A. (2011). Phenocryst complexity in andesites and dacites from the Tequila volcanic field, Mexico: resolving the effects of degassing vs. magma mixing. Contributions to Mineralogy and Petrology, 162(2), 415–445. doi: 10.1007/s00410‐010‐0604‐1
82 Frost, B. R. (Ed.) (1991). Introduction to oxygen fugacity and its petrologic importance, 1–9 pp. BookCrafters Inc., Chelsea, MI.
83 Frost, B. R., & Lindsley, D. H. (1992). Equilibria among Fe‐Ti oxides, pyroxenes, olivine, and quartz 2. Application American Mineralogist, 77(9–10), 1004–1020.
84 Frost, D. J., & McCammon, C. A. (2008). The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36(1), 389–420, doi: doi:10.1146/annurev.earth.36.031207.124322
85 Fryer, P., Ambos, E., & Hussong, D. (1985). Origin and emplacement of Mariana forearc seamounts. Geology, 13(11), 774–777.
86 Gaetani, G. A., O’Leary, J. A., Shimizu, N., Bucholz, C. E., & Newville, M. (2012). Rapid reequilibration of H2O and oxygen fugacity in olivine‐hosted melt inclusions. Geology, 40(10), 915–918.
87 Gaillard, F., Scaillet, B., Pichavant, M., & Iacono‐Marziano, G. (2015). The redox geodynamics linking basalts and their mantle sources through space and time. Chemical Geology, 418, 217–233. doi: 10.1016/j.chemgeo.2015.07.030
88 Gale, A., Laubier, M., Escrig, S., & Langmuir, C. H. (2013a). Constraints on melting processes and plume‐ridge interaction from comprehensive study of the FAMOUS and North Famous segments, Mid‐Atlantic Ridge. Earth and Planetary Science Letters, 365, 209–220. doi: 10.1016/j.epsl.2013.01.022
89 Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., & Schilling, J.‐G. (2013b). The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518. doi: 10.1029/2012gc004334
90 Genske, F. S., Turner, S. P., Beier, C., & Schaefer, B. F. (2012). The petrology and geochemistry of lavas from the Western Azores Islands of Flores and Corvo. Journal of Petrology, 53(8), 1673–1708. doi: 10.1093/petrology/egs029
91 Ghiorso, M. S., & Evans, B. W. (2008). Thermodynamics of rhombohedral oxide solid solutions and a revision of the FE‐TI two‐oxide geothermometer and oxygen‐barometer. American Journal of Science, 308(9), 957–1039. doi: 10.2475/09.2008.01
92 Gill, J. B. (1981). Orogenic Andesites and Plate Tectonics, New York: Springer‐Verlag. 390 pp.
93 Grégoire, M., Moine, B. N., O’Reilly, S. Y., Cottin, J. Y., & Giret, A. (2000). Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate‐and carbonate‐rich melts (Kerguelen Islands, Indian Ocean). Journal of Petrology, 41(4), 477–509.
94 Grocke, S. B., Cottrell, E., de Silva, S., & Kelley, K. A. (2016). The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth and Planetary Science Letters, 440, 92–104. doi: 10.1016/j.epsl.2016.01.026
95 Grove, T. L., Till, C. B., & Krawczynski, M. J. (2012). The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences, 40(1), 413–439. doi: 10.1146/annurev‐earth‐042711‐105310
96 Grove, T. L., Baker, M. B., Price, R. C., Parman, S. W., Elkins‐Tanton, L. T., Chatterjee, N., & Muntener, O. (2005). Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O‐rich mantle melts. Contributions to Mineralogy and Petrology, 148(5), 542–565. doi: 10.1007/s00410‐004‐0619‐6
97 Gunnarsson, B., Marsh, B. D., & Taylor, H. P. (1998). Generation of Icelandic rhyolites:silicic lavas from Torfajökull central volcano, edited. Journal of Volcanology and Geothermal Research, 83(1–2), 1–45.
98 Haggerty, S. (1976). Opaque mineral oxides in terrestrial igneous rocks. Oxide Minerals: Short Course Notes, 3, 101–300.
99 Hartley, M. E., Shorttle, O., Maclennan, J., Moussallam, Y., & Edmonds, M. (2017). Olivine‐hosted melt inclusions as an archive of redox heterogeneity in magmatic systems. Earth and Planetary Science Letters, 479, 192–205. doi: https://doi.org/10.1016/j.epsl.2017.09.029.
100 Hasse, K. M., Stoffers, P., & Dieter Garbe‐Schönberg, C. (1997). The petrogenetic evolution of lavas from Easter Island and neighbouring seamounts, near‐ridge hotspot volcanoes in the SE Pacific, edited. Journal of Petrology, 38(6), 785–813.
101 Hauri, E. H., & Hart, S. R. (1994). Constraints on melt migration from mantle plumes: a trace element study of peridotite xenoliths from Savai'i, Western Samoa. Journal of Geophysical Research: Solid Earth, 99(B12), 24301–24321.
102 Helz, R., Cottrell, E., Brounce, M. N., & Kelley, K. A. (2017). Olivine‐melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES. Journal of Volcanology and Geothermic Research, 333, 1–14.
103 Herd, C. D. K. (2008). Basalts as probes of planetary interior redox state. Reviews in Mineralogy and Geochemistry, 68, 527–553.
104 Hirschmann, M., Withers, A., Ardia, P., & Foley, N. (2012). Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth and Planetary Science Letters, 345, 38–48.
105 Howe, T. M., Lindsay, J. M., Shane, P., Schmitt, A. K., & Stockli, D. F. (2014). Re‐evaluation of the Roseau Tuff eruptive sequence and other Ignimbrites in Dominica, Lesser Antilles. Journal of Quaternary Science, 29(6), 531–546. doi: 10.1002/jqs.2723
106 Izbekov, P. E., Eichelberger, J. C., Patino, L. C., Vogel, T. A., & Ivanov, B. V. (2002). Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment. Geology, 30(9), 799–802. doi: 10.1130/0091‐7613(2002)030<0799:ccoppi>2.0.co;2
107 Janiszewski, H. A., Abers, G. A., Shillington, D. J., & Calkins, J. A. (2013). Crustal structure along the Aleutian island arc: New insights from receiver functions constrained by active‐source data. Geochemistry, Geophysics, Geosystems, 14(8), 2977–2992. doi: 10.1002/ggge.20211
108 Jayasuriya, K. D., O'Neill, H. S., Berry, A. J., & Campbell, S. J. (2004). A Mossbauer study of the oxidation state of Fe in silicate melts. American Mineralogist, 89(11–12), 1597–1609.
109 Kelemen, P. B., Yogodzindki, G. M., & Scholl, D. W. (2003). Along‐strike variation in the Aleutian Island Arc: Genesis of high Mg# Andesite and Implications for continental crust. Geophysical Monograph 138, 223–277. doi: 10.1029/138GM11
110 Kelemen, P. B., Hanghoj, K., & Greene, A. R. (2007). One view of the geochemistry of subduction‐related magmatic arcs, with an emphasis on primitive andesite and lower crust. In Turekian, K., & Holland, H. (eds.) Treatise on Geochemistry, Elsevier Ltd. 1–70.
111 Kelley, K. A., & Cottrell, E. (2009). Water and the oxidation state of subduction zone magmas. Science, 325(5940), 605–607. doi: 10.1126/science.1174156
112 Kelley, K. A., & Cottrell, E. (2012). The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth and Planetary Science Letters, 329, 109–121. doi: 10.1016/j.epsl.2012.02.010
113 Kennedy, G. C. (1955). Some aspects of the role of water in rock melts. Geological Society of America Special Paper, 62, 489–504.
114 Klimm, K., Kohn, S. C., O'Dell, L. A., Botcharnikov, R. E., & Smith, M. E. (2012). The dissolution mechanism of sulphur in hydrous silicate melts. I: Assessment of analytical techniques in determining the sulphur speciation in iron‐free to iron‐poor glasses. Chemical Geology, 322–323, 237–249. doi: 10.1016/j.chemgeo.2012.04.027
115 Kress, V. C., & Carmichael, I. S. E. (1991). The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108, 82–92.
116 Krzywinski, M., & Altman, N. (2013). Significance, P values and t‐tests. Nature Methods, 10(11), 1041–1042. doi: 10.1038/nmeth.2698
117 Kushiro, I. (1972). Effect of water on composition of magmas formed at high pressures. Journal of Petrology, 13(2), 311–334.
118 Kyser, T. K., O'Neil, J. R., & Carmichael, I. S. E. (1981). Oxygen isotope thermometry of basic lavas and mantle nodules. Contributions to Mineralogy and Petrology, 77(1), 11–23.
119 Larsen, J. F. (2006). Rhyodacite magma storage conditions prior to the 3430 yBP caldera‐forming eruption of Aniakchak volcano, Alaska. Contributions to Mineralogy and Petrology, 152(4), 523–540. doi: 10.1007/s00410‐006‐0121‐4
120 Laubier, M., Grove, T. L., & Langmuir, C. H. (2014). Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP‐MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters, 392, 265–278. doi: 10.1016/j.epsl.2014.01.053
121 Le Voyer, M., Cottrell, E., Kelley, K. A., Brounce, M., & Hauri, E. H. (2015). The effect of primary versus secondary processes on the volatile content of MORB glasses: An example from the equatorial Mid‐Atlantic Ridge (5° N–3° S). Journal of Geophysical Research: Solid Earth, 120(1), 125–144.
122 Le Voyer, M., Hauri, E. H., Cottrell, E., Kelley, K. A., Salters, V. J. M., Langmuir, C. H., et al. (2018). Carbon fluxes and primary magma CO2 contents along the global mid‐ocean ridge system. Geochemistry, Geophysics, Geosystems, 20(3), 1387–1424. doi: 10.1029/2018GC007630
123 Lecuyer, C., & Ricard, Y. (1999). Long‐term fluxes and budget of ferric iron: implication for the redox states of the Earth’s mantle and atmosphere. Earth and Planetary Science Letters, 165(2), 197–211.
124 Lee, C.‐T., Brandon, A. D., & Norman, M. (2003). Vanadium in peridotites as a proxy for paleo‐fO(2) during partial melting: Prospects, limitations, and implications. Geochimica Et Cosmochimica Acta, 67(16), 3045–3064.
125 Lee, C.‐T., Leeman, W. P., Canil, D., & Li, Z.‐X. A. (2005). Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions. Journal of Petrology, 46(11), 2313–2336. doi: 10.1093/petrology/egi056
126 Lee, C.‐T. A., Lee, T. C., & Wu, C.‐T. (2013). Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas. Geochimica et Cosmochimica Acta, 143, 8–22. doi: 10.1016/j.gca.2013.08.009.
127 Lee, C.‐T. A., Luffi, P., Le Roux, V., Dasgupta, R., Albarede, F., & Leeman, W. P. (2010). The redox state of arc mantle using Zn/Fe systematics. Nature, 468(7324), 681–685.
128 Lee, C. T. A., Luffi, P., Chin, E. J., Bouchet, R., Dasgupta, R., Morton, D. M., et al. (2012). Copper systematics in arc magmas and implications for crust‐mantle differentiation. Science, 336(6077), 64–68. doi: 10.1126/science.1217313
129 Levin, V., Park, J., Brandon, M., Lees, J., Peyton, V., Gordeev, E., & Ozerov, A. (2002). Crust and upper mantle of Kamchatka from teleseismic receiver functions. Tectonophysics, 358(1–4), 233–265. doi: 10.1016/s0040‐1951(02)00426‐2
130 Li, J., Kornprobst, J., Vielzeuf, D., & Fabriès, J. (1995). An improved experimental calibration of the olivine‐spinel geothermometer. Chinese Journal of Geochemistry, 14(1), 68–77.
131 Luhr, J. F. (2000). The geology and petrology of Volcán San Juan (Nayarit, México) and the compositionally zoned Tepic Pumice. Journal of Volcanology and Geothermal Research, 95, 109–156.
132 Luhr, J. F., & Carmichael, I. S. E. (1980). The Colima Volcanic complex, Mexico: I. Post‐caldera andesite from Volcán Colima. Contributions to Mineralogy and Petrology, 71, 343–372.
133 Mallmann, G., & O'Neill, H. S. C. (2007). The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochimica et Cosmochimica Acta, 71(11), 2837–2857. doi: 10.1016/j.gca.2007.03.028
134 Mallmann, G., & O'Neill, H. S. C. (2009). The Crystal/Melt Partitioning of V during Mantle Melting as a Function of Oxygen Fugacity Compared with some other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9), 1765–1794. doi: 10.1093/petrology/egp053
135 Mallmann, G., & O'Neill, H. S. (2013). Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. Journal of Petrology, 54(5), 933–949. doi: 10.1093/petrology/egt001
136 Mallmann, G., Burnham, A., & Fonseca, R. O. (2021). Mineral‐melt partitioning of redox‐sensitive elements. In: Neuville, D. R., Moretti, R. (eds.) AGU Geophysical Monograph Redox variables and mechanisms in magmatism and volcanism. Wiley.
137 Manalo, P. C., Dirnalanta, C.B., Faustino‐Eslava, D. V., Ramos, N. T., Queano, K. L., & Yumul, G. P. (2015). Crustal thickness variation from a continental to an island arc terrane: Clues from the gravity signatures of the Central Philippines. Journal of Asian Earth Sciences, 104, 205–214. doi: 10.1016/j.jseaes.2014.08.031
138 Mandeville, C. W., Carey, S., & Sigurdsson, H. (1996). Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia. Journal of Volcanology and Geothermal Research, 74(3–4), 243–274.
139 Mazzullo, L. J., & Bence, A. (1976). Abyssal tholeiites from DSDP Leg 34: the Nazca plate. Journal of Geophysical Research, 81(23), 4327–4351.
140 McGlashan, N., Brown, L., & Kay, S. M. (2008). Crustal thickness in the central Andes from teleseismically recorded depth phase precursors. Geophysical Journal International, 175(3), 1013–1022. doi: 10.1111/j.1365‐246X.2008.03897.x
141 McKenzie, D., & Onions, R. K. (1983). Mantle reservoirs and ocean island basalts. Nature, 301(5897), 229–231.
142 Montelli, R., Nolet, G., Dahlen, F. A., & Masters, G. (2006). A catalogue of deep mantle plumes: New results from finite‐frequency tomography. Geochemistry, Geophysics, Geosystems, 7(11). doi: 10.1029/2006gc001248
143 Moussallam, Y., Edmonds, M., Scaillet, B., Peters, N., Gennaro, E., Sides, I., & Oppenheimer, C. (2016). The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano. Earth and Planetary Science Letters, 450, 317–325.
144 Moussallam, Y., Oppenheimer, C., Scaillet, B., Gaillard, F., Kyle, P., Peters, N., et al. (2014). Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing. Earth and Planetary Science Letters, 393, 200–209.
145 Moussallam, Y., Longpré, M.‐A., McCammon, C., Gomez‐Ulla, A., Rose‐Koga, E. F., Scaillet, B., et al. (2019). Mantle plumes are oxidised. Earth and Planetary Science Letters, 527. doi: 10.1016/j.epsl.2019.115798
146 Muir, D. D., Blundy, J. D., Rust, A. C., & Hickey, J. (2014). Experimental constraints on dacite pre‐eruptive magma storage conditions beneath Uturuncu Volcano. Journal of Petrology, 55(4), 749–767. doi: 10.1093/petrology/egu005
147 Mungall, J. E. (2002). Roasting the mantle: Slab melting and the genesis of major Au and Au‐rich Cu deposits. Geology, 30(10), 915–918.
148 Myers, C. E., & Eugster, H. P. (1983). The system Fe‐Si‐O: Oxygen buffer calibrations to 1500K. Contributions to Mineralogy and Petrology, 82, 75–90.
149 Mysen, B. O. (2006). Redox equilibria of iron and silicate melt structure: Implications for olivine/melt element partitioning. Geochimica et Cosmochimica Acta, 70(12), 3121–3138. doi: 10.1016/j.gca.2006.03.014
150 Mysen, B. O., Kumamoto, K., Cody, G. D., & Fogel, M. L. (2011). Solubility and solution mechanisms of C–O–H volatiles in silicate melt with variable redox conditions and melt composition at upper mantle temperatures and pressures. Geochimica et Cosmochimica Acta, 75, 6183–6199. doi: 10.1016/j.gca.2011.07.035
151 Nebel, O., Sossi, P. A., Bénard, A., Wille, M., Vroon, P. Z., & Arculus, R. J. (2015). Redox‐variability and controls in subduction zones from an iron‐isotope perspective. Earth and Planetary Science Letters, 432, 142–151. doi: 10.1016/j.epsl.2015.09.036
152 Nell, J., & Wood, B. J. (1991). High‐temperature electrical measurements and thermodynamic properties of Fe3O4‐FeCr2O4‐MgCr2O4‐FeAl2O4 spinels. American Mineralogist, 76(3–4), 405–426.
153 Neumann, E.‐R. (1991). Ultramafic and mafic xenoliths from Hierro, Canary Islands: evidence for melt infiltration in the upper mantle. Contributions to Mineralogy and Petrology, 106(2), 236–252.
154 Neumann, E. R., Wulff‐Pedersen, E., Pearson, N. J., & Spencer, E. A. (2002). Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. Journal of Petrology, 43(5), 825–857.
155 Neumann, E. R., Wulff‐Pedersen, E., Johnsen, K., Andersen, T., & Krogh, E. (1995). Petrogenesis of spinel harzburgite and dunite suite xenoliths from Lanzarote, eastern Canary Islands: implications for the upper mantle. Lithos, 35(1–2), 83–107.
156 Newcombe, M., Brett, A., Beckett, J., Baker, M., Newman, S., Guan, Y., et al. (2017). Solubility of water in lunar basalt at low PH2O. Geochimica et Cosmochimica Acta, 200, 330–352.
157 Nicklas, R. W., Puchtel, I. S., Ash, R. D., Piccoli, P. M., Hanski, E., Nisbet, E. G., et al. (2019). Secular mantle oxidation across the Archean‐Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. Geochimica et Cosmochimica Acta, 250, 49–75. doi: 10.1016/j.gca.2019.01.037
158 Nicolich, R., Laigle, M., Hirn, A., Cernobori, L., & Gallart, J. (2000). Crustal structure of the Ionian margin of Sicily: Etna Volcano in the Fram of regional evolution. Tectonophysics, 329, 121–139.
159 O’Neill, H. S., & Pownceby, M. I. (1993). Thermodynamic data from redox reactions at high temperatures. 1. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe‐ FeO, Co‐CoO, Ni‐NiO and Cu‐Cu2O oxygen buffers, and new data for the W‐WO2 buffer. Contributions to Mineralogy and Petrology, 114(3), 296–314.
160 O’Neill, H. S. C., & Wall, V. (1987). The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. Journal of Petrology, 28(6), 1169–1191.
161 O’Neill, H. S. C., Berry, A. J., & Mallmann, G. (2018). The oxidation state of iron in Mid‐Ocean Ridge Basaltic (MORB) glasses: Implications for their petrogenesis and oxygen fugacities. Earth and Planetary Science Letters, 504, 152–162. doi: 10.1016/j.epsl.2018.10.002
162 O’Neill, H. S. C. (1987). Quartz‐fayalite‐rion and quartz‐fayalite‐magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). American Mineralogist, 72, 67–75.
163 Osborn, E. F. (1959). Role of oxygen pressure in the crystallization and differentiation of basaltic magma. American Journal of Science, 257(9), 609–647.
164 Parkinson, I. J., & Pearce, J. A. (1998). Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): evidence for mantle melting and melt–mantle interaction in a supra‐subduction zone setting. Journal of Petrology, 39(9), 1577–1618.
165 Parkinson, I. J., & Arculus, R. J. (1999). The redox state of subduction zones: insights from arc‐peridotites. Chemical Geology, 160(4), 409–423.
166 Parkinson, I. J., Arculus, R. J., & Eggins, S. M. (2003). Peridotite xenoliths from Grenada, Lesser Antilles Island Arc. Contributions to Mineralogy and Petrology, 146(2), 241–262. doi: 10.1007/s00410‐003‐0500‐z
167 Partzsch, G. M., Lattard, D., & McCammon, C. (2004). Mössbauer spectroscopic determination of Fe3+/Fe2+ in synthetic basaltic glass: a test of empirical fO2 equations under superliquidus and subliquidus conditions. Contributions to Mineralogy and Petrology, 147(5), 565–580. doi: 10.1007/s00410‐004‐0571‐5
168 Pearce, J. A., Barker, P. F., Edwards, S. J., Parkinson, I. J., & Leat, P. T. (2000). Geochemistry and tectonic significance of peridotites from the South Sandwich arc‐basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139, 36–53.
169 Plank, T., & Langmuir, C. H. (1988). An evaluation of the global variations in the major element chemistry of arc basalts. Earth and Planetary Science Letters, 90(4), 349–370.
170 Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H., & Wallace, P. J. (2013). Why do mafic arc magmas contain 4 wt% water on average? Earth and Planetary Science Letters, 364, 168–179. doi: 10.1016/j.epsl.2012.11.044
171 Portnyagin, M., Hoernle, K., Storm, S., Mironov, N., van den Bogaard, C., & Botcharnikov, R. (2012). H2O‐rich melt inclusions in fayalitic olivine from Hekla volcano: Implications for phase relationships in silicic systems and driving forces of explosive volcanism on Iceland. Earth and Planetary Science Letters, 357–358(0), 337–346. doi: 10.1016/j.epsl.2012.09.047
172 Righter, K., Danielson, L. R., Pando, K., Morris, R. V., Graff, T. G., Agresti, D. G., et al. (2013). Redox systematics of martian magmas with implications for magnetite stability. American Mineralogist, 98(4), 616–628.
173 Rowe, M. C., Kent, A. J. R., & Nielsen, R. L. (2007). Determination of sulfur speciation and oxidation state of olivine hosted melt inclusions. Chemical Geology, 236(3–4), 303–322.
174 Rutherford, M. J., & Devine, J. D. (1996). Preeruption pressure–temperature conditions and volatiles in the 1991 dacitic magma of Mount Pinatubo. In: Punongbayan, R., & Newhall, C. G. (eds.) Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Phillipines. University of Washington Press. 751–766.
175 Ryabchikov, J. D., Ntaflos, T., Kurat, G., & Kogarko, L. N. (1995). Glass‐bearing xenoliths from Cape Verde: evidence for a hot rising mantle jet. Mineralogy and Petrology, 55(4), 217–237.
176 Sack, R. O., & Ghiorso, M. S. (1991a). Chromian spinels as petrogenetic indicators: Thermo dynamics and petrological applications. American Mineralogist, 76, 827–847.
177 Sack, R. O., & Ghiorso, M. S. (1991b), An internally consistent model for the thermodynamic properties of Fe−Mg‐titanomagnetite‐aluminate spinels. Contributions to Mineralogy and Petrology, 106(4), 474–505.
178 Saiga, A., Matsumoto, S., Uehira, K., Matsushima, T., & Shimizu, H. (2010). Velocity structure in the crust beneath the Kyushu area. Earth Planets and Space, 62(5), 449–462. doi: 10.5047/eps.2010.02.003
179 Sen, G. (1987). Xenoliths associated with the Hawaiian Hot Spot. Mantle Xenoliths, 359–375.
180 Sen, G. (1988). Petrogenesis of spinel lherzolite and pyroxenite suite xenoliths from the Koolau shield, Oahu, Hawaii: implications for petrology of the post‐eruptive lithosphere beneath Oahu. Contributions to Mineralogy and Petrology, 100(1), 61–91.
181 Sen, G., & Presnall, D. C. (1986). Petrogenesis of dunite xenoliths from Koolau volcano, Oahu, Hawaii: implications for Hawaiian volcanism. Journal of Petrology, 27(1), 197–217.
182 Sen, G., & Leeman, W. P. (1991). Iron‐rich lherzolitic xenoliths from Oahu: origin and implications for Hawaiian magma sources. Earth and Planetary Science Letters, 102(1), 45–57.
183 Sevilla, W. I., Ammon, C. J., Voight, B., & De Angelis, S. (2010). Crustal structure beneath the Montserrat region of the Lesser Antilles island arc. Geochemistry Geophysics Geosystems, 11, 13. doi: 10.1029/2010gc003048
184 Shervais, J. W. (1982). Ti‐V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59, 101–118.
185 Shorttle, O., Moussallam, Y., Hartley, M. E., Maclennan, J., Edmonds, M., & Murton, B. J. (2015). Fe‐XANES analyses of Reykjanes Ridge basalts: Implications for oceanic crust's role in the solid Earth oxygen cycle. Earth and Planetary Science Letters, 427, 272–285. doi: 10.1016/j.epsl.2015.07.017
186 Sleep, N. H. (1992). Hotspots and mantle plumes. Annual Review of Earth Planetary Science, 20, 19–43.
187 Sorbadere, F., Laurenz, V., Frost, D. J., Wenz, M., Rosenthal, A., McCammon, C., & Rivard, C. (2018). The behaviour of ferric iron during partial melting of peridotite. Geochimica et Cosmochimica Acta, 239, 235–254. doi: 10.1016/j.gca.2018.07.019
188 Spieker, K., Rondenay, S., Ramalho, R., Thomas, C., & Helffrich, G. (2018). Constraints on the structure of the crust and lithosphere beneath the Azores Islands from tele seismic receiver functions. Geophysical Journal International, 213, 824–835.
189 Stagno, V., Ojwang, D. O., McCammon, C. A., & Frost, D. J. (2013). The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature, 493(7430), 84–88. doi: 10.1038/nature11679
190 Stelten, M. E., & Cooper, K. M. (2012). Constraints on the nature of the subvolcanic reservoir at South Sister volcano, Oregon from U‐series dating combined with sub‐crystal trace‐element analysis of plagioclase and zircon. Earth and Planetary Science Letters, 313, 1–11. doi: 10.1016/j.epsl.2011.10.035
191 Stolper, D. A., & Bucholz, C. E. (2019). Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proceedings of the National Academy of Sciences of the United States of America, 116(18), 8746–8755. doi: 10.1073/pnas.1821847116
192 Stolper, E., & Newman, S. (1994). The role of water in the petrogenesis of Mariana Trough magmas. Earth and Planetary Science Letters, 121(3–4), 293–325.
193 Stracke, A., Hofmann, A. W., & Hart, S. R. (2005). FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 6, Q05007.
194 Syuhada, S., Hananto, N. D., Abdullah, C. I., Puspito, N. T., Anggono, T., & Yudistira, T. (2016). Crustal structure along Sunda‐Banda arc transition zone from teleseismic receiver functions. Acta Geophysica, 64, 2020–2049.
195 Takahashi, N., Kodaira, S., Klemperer, S. L., Tatsumi, Y., Kaneda, Y., & Suyehiro, K. (2007). Crustal structure and evolution of the Mariana intra‐oceanic island arc. Geology, 35(3), 203–206.
196 Tang, M., Erdman, M., Eldridge, G., & Lee, C. A. (2018). The redox “filter” beneath magmatic orogens and the formation of continental crust. Science Advances, 4.
197 Thornber, C. R., Roeder, P. L., & Foster, J. R. (1980). The effect of composition on the ferric‐ferrous ratio in basaltic liquids at atmospheric pressure. Geochimica et Cosmochimica Acta, 44(3), 525–532.
198 Tollan, P., & Hermann, J. (2019). Arc magmas oxidised by water dissociation and hydrogen incorporation in orthopyroxene. Nature Geoscience, 12(8), 667–671. doi: 10.1038/s41561‐019‐0411‐x
199 Toothill, J., Williams, C. A., Macdonald, R., Turner, S. P., Rogers, N. W., Hawkesworth, C. J., et al. (2007). A complex petrogenesis for an arc magmatic suite, St Kitts, Lesser Antilles. Journal of Petrology, 48(1), 3–42. doi: 10.1093/petrology/egl052
200 Tracy, R. J. (1980). Petrology and genetic significance of an ultramafic xenolith suite from Tahiti. Earth and Planetary Science Letters, 48(1), 80–96.
201 Tucker, J. M., Hauri, E. H., Marske, J. P., Garcia, M. O., Trusdell, M. A., & Pietruszka, A. J. (2019). A high carbon content of the Hawaiian mantle from olivine‐hosted melt inclusions. Geochimica et Cosmochimica Acta, 254, 156–172.
202 Turner, S. J., & Langmuir, C. H. (2015). The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes. Earth and Planetary Science Letters, 422, 182–193. doi: 10.1016/j.epsl.2015.03.056
203 Turner, S. J., & Langmuir, C. (2015). What processes control the chemical compositions of arc front stratovolcanoes? Geochemistry, Geophysics, Geosystems, 16, 1865–1893. doi: 10.1002/2014GC005633
204 Turner, S. J., Langmuir, C., Katz, R. F., Dungan, M. A., & Escrig, S. (2016). Parental arc magma compositions dominantly controlled by mantle‐wedge thermal structure. Nature Geoscience, 9, 772–776. doi: 10.1038/ngeo2788
205 Veenstra, E., Christensen, D. H., Abers, G. A., & Ferris, A. (2006). Crustal thickness variation in south‐central Alaska. Geology, 34(9), 781–784. doi: 10.1130/g22615.1
206 Wallace, P. J., & Carmichael, I. S. E. (1994). S‐Speciation in submarine basaltic glasses as determined by measurements of Sk‐Alpha x‐ray wavelength shifts. American Mineralogist, 79(1–2), 161–167.
207 Wasilewski, B., Doucet, L. S., Moine, B., Beunon, H., Delpech, G., Mattielli, N., et al. (2017). Ultra‐refractory mantle within oceanic plateau: Petrology of the spinel harzburgites from Lac Michèle, Kerguelen Archipelago. Lithos, 272, 336–349.
208 Waters, L. E., & Lange, R. A. (2013). Crystal‐poor, multiply saturated rhyolites (obsidians) from the Cascade and Mexican arcs: evidence of degassing‐induced crystallization of phenocrysts. Contributions to Mineralogy and Petrology, 166(3), 731–754. doi: 10.1007/s00410‐013‐0919‐9
209 Waters, L. E., & Lange, R. A. (2015). An updated calibration of the plagioclase‐liquid hygrometer‐thermometer applicable to basalts through rhyolites. American Mineralogist, 100(10), 2172–2184. doi: 10.2138/am‐2015‐5232
210 Waters, L. E., & Lange, R. A. (2016). No effect of H2O degassing on the oxidation state of magmatic liquids. Earth and Planetary Science Letters, 447, 48–59. doi: 10.1016/j.epsl.2016.04.030
211 Waters, L. E., & Frey, H. M. (2018). Crystal‐poor rhyolites and rhyodacites from Volcan Tepetiltic, Mexico: Evidence for melt formation, crystallization and eruption over short timescales. Journal of Volcanology and Geothermal Research, 361, 36–50. doi: 10.1016/j.jvolgeores.2018.08.003
212 Watts, A. B., & ten Brink, U. S. (1989). Crustal structure, flexure, and subsidence history of the Hawaiian Islands. Journal of Geophysical Research Solid Earth, 94, 10473–10500.
213 Wilke, M., Jugo, P. J., Klimm, K., Susini, J., Botcharnikov, R., Kohn, S. C., & Janousch, M. (2008). The origin of S4+ detected in silicate glasses by XANES. American Mineralogist, 93(1), 235–240. doi: 10.2138/am.2008.2765
214 Williams, H., Peslier, A., McCammon, C., Halliday, A., Levasseur, S., Teutsch, N., & Burg, J. (2005). Systematic iron isotope variations in mantle rocks and minerals: The effects of partial melting and oxygen fugacity. Earth and Planetary Science Letters, 235(1–2), 435–452. doi: 10.1016/j.epsl.2005.04.020
215 Williams, H. M., McCammon, C. A., Peslier, A. H., Halliday, A. N., Teutsch, N., Levasseur, S., & Burg, J.‐P. (2004). Iron isotope fractionation and the oxygen fugacity of the mantle. Science, 304(5677), 1656–1659.
216 Wolfe, E. W., Wise, W. S., & Dalrymple, G. B. (1997). The geology and petrology of Mauna Kea Volcano, Hawaii – A study of postshield volcanism. USGS Professional Paper. pp. 1–129.
217 Wood, B. J. (1990). An experimental test of the spinel peridotite oxygen barometer. Journal of Geophysical Research‐Solid Earth and Planets, 95(B10), 15845–15851.
218 Wood, B. J., & Virgo, D. (1989). Upper mantle oxidation state – ferric iron contents of lherzoline spinels by Fe‐57 Mossbauer spectroscopy and resultant oxygen fugacities. Geochimica et Cosmochimica Acta, 53(6), 1277–1291.
219 Wood, B. J., Bryndzia, L. T., & Johnson, K. E. (1990). Mantle oxidation‐state and its relationship to tectonic environment and fluid speciation. Science, 248(4953), 337–345.
220 Wulff‐Pedersen, E., Neumann, E.‐R., & Jensen, B. á. (1996). The upper mantle under La Palma, Canary Islands: formation of Si‐ K‐ Na‐rich melt and its importance as a metasomatic agent. Contributions to Mineralogy and Petrology, 125(2–3), 113–139.
221 Zhang, H. L., Cottrell, E., Solheid, P. A., Kelley, K. A., & Hirschmann, M. M. (2018). Determination of Fe3+/SFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chemical Geology, 479(2018), 166–175.
222 Zimmer, M. M., Plank, T., Hauri, E. H., Yogodzinski, G. M., Stelling, P., Larsen, J., et al. (2010). The role of water in generating the calc‐alkaline trend: New volatile data for Aleutian magmas and a new tholeiitic index. Journal of Petrology, 51(12), 2411–2444. doi: 10.1093/petrology/egq062