Читать книгу Urban Remote Sensing - Группа авторов - Страница 43
REFERENCES
Оглавление1 Alonzo, M., Bookhagen, B., and Roberts, D.A. (2014). Urban tree species mapping using hyperspectral and LiDAR data fusion. Remote Sensing of Environment 148: 70–83. doi:10.1016/j.rse.2014.03.018.
2 ASPRS (American Society for Photogrammetry and Remote Sensing) (2013). LAS Specification Version 1.4 ‐ R13, 15 July 2013. https://www.asprs.org/wp‐content/uploads/2010/12/LAS_1_4_r13.pdf (accessed 11 November 2019).
3 Axelsson, P. (1999). Processing of laser scanner data: algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing 54: 138–147. doi:10.1016/S0924‐2716(99)00008‐8.
4 Babahajiani, P., Fan, L., and Gabbouj, M. (2015). Object recognition in 3D point cloud of urban street scene. Asian Conference on Computer Vision, ACCV 2014 Workshops, 177–190. doi:10.1007/978‐3‐319‐16628‐5_13.
5 Bagheri, H., Schmitt, M., d'Angelo, P., and Zhu, X.X. (2018). A framework for SAR‐optical stereogrammetry over urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 146: 389–408. doi:10.1016/j.isprsjprs.2018.10.003.
6 Balk, D.L., Nghiem, S. V., Jones, B., Liu, Z., and Dunn, G. (2019). Up and out: a multifaceted approach to characterizing urbanization in Greater Saigon, 2000‐2009. Landscape and Urban Planning, 187: 199–209. doi:10.1016/j.landurbplan.2018.07.009.
7 Boyko, A., and Funkhouser, T. (2011). Extracting roads from dense point clouds in large scale urban environment. ISPRS Journal of Photogrammetry and Remote Sensing 66: S2–S12.
8 Brenner, A.R., and Roessing, L. (2008). Radar imaging of urban areas by means of very high‐resolution SAR and interferometric SAR. IEEE Transactions on Geoscience and Remote Sensing 46(10): 2971–2982. doi:10.1109/TGRS.2008.920911.
9 Brunner, D., Lemoine, G., Bruzzone, L., and Greidanus, H. (2010). Building height retrieval from VHR SAR imagery based on an iterative simulation and matching technique. IEEE Transactions on Geoscience and Remote Sensing, 48(3): 1487–1504. doi:10.1109/TGRS.2009.2031910.
10 Buckreuss, S., Schättler, B., Fritz, T., Mittermayer, J., Kahle, R., Maurer, E., Böer, J., Bachmann, M., Mrowka, F., Schwarz, E., Breit, H., and Steinbrecher, U. (2018). Ten years of TerraSAR‐X operations. Remote Sensing 10(6): 873. doi:10.3390/rs10060873.
11 Cheuk, M.L., and Yuan, M. (2009). Assessing spatial uncertainty of lidar‐derived building model. Photogrammetric Engineering & Remote Sensing 75(3): 257–269. doi:10.14358/PERS.75.3.257.
12 Dell'Acqua, F., and Gamba, P. (2006). Discriminating urban environments using multiscale texture and multiple SAR images. International Journal of Remote Sensing 27(18): 3797–3812. doi:10.1080/01431160600557572.
13 Dong, P., Ramesh, S., and Nepali, A. (2010). Evaluation of small‐area population estimation using LiDAR, Landsat TM and parcel data. International Journal of Remote Sensing 31(21): 5571–5586. doi:10.1080/01431161.2010.496804.
14 Dong, P., and Guo, H.D. (2012). A framework for automated assessment of post‐earthquake building damage using geospatial data. International Journal of Remote Sensing 33: 81–100. doi:10.1080/01431161.2011.582188.
15 Dong, P., and Chen, Q. (2018). LiDAR Remote Sensing and Applications. New York: CRC Press.
16 Dong, P., Zhong, R., and Yigit, A. (2018). Automated parcel‐based building change detection using multitemporal airborne LiDAR data. Surveying and Land Information Science 77(1): 5–13.
17 Dong, T., Jiao, L., Xu, G., Yang, L., and Liu, J. (2019). Toward sustainability? Analyzing changing urban form patterns in the United States, Europe, and China. Science of the Total Environment 671: 632–643. doi:10.1016/j.scitotenv.2019.03.269.
18 Dorninger, P., and Pfeifer, N. (2008). A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors, 8, 7323–7343. doi:10.3390/s8117323.
19 Ellis, E.A., and Mathews, A.J. (2019). Object‐based delineation of urban tree canopy: assessing change in Oklahoma City, 2006–2013. Computers, Environment and Urban Systems 73: 85–94. doi:10.1016/j.compenvurbsys.2018.08.006.
20 ESA (European Space Agency) (2019). ESA Sentinel Online – Missions – Sentinel‐3. https://sentinel.esa.int/web/sentinel/missions/sentinel‐3 (accessed 10 December 2019).
21 Esch, T., Thiel, M., Schenk, A., Roth, A., Muller, A., and Dech, S. (2009). Delineation of urban footprints from TerraSAR‐X data by analyzing speckle characteristics and intensity information. IEEE Transactions on Geoscience and Remote Sensing 48(2): 905–916. doi:10.1109/TGRS.2009.2037144.
22 Esch, T., Schmidt, M., Breunig, M., Felbier, A., Taubenböck, H., Heldens, W., Riegler, C., Roth, A., and Dech, S. (2011). Identification and characterization of urban structures using VHR SAR data. 2011 IEEE International Geoscience and Remote Sensing Symposium (Vancouver) 1413–1416. doi:10.1109/IGARSS.2011.6049331.
23 Esch, T., Marconcini, M. Felbier, A., Roth, A., Heldens, W., Huber, M., Schwinger, M., Taubenböck, H., Müller, A., and Dech, S. (2013). Urban footprint processor – fully automated processing chain generating settlement masks from global data of the TanDEM‐X mission. IEEE Geoscience Remote Sensing Letters 10(6): 1617–1621. doi:10.1109/LGRS.2013.2272953.
24 Esch, T., Heldens, W., Hirner, A., Keil, M., Marconcini, M., Roth, A., Zeidler, J., Dech, S., and Strano, E. (2017). Breaking new ground in mapping human settlements from space – the global urban footprint. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 30–42. doi:10.1016/j.isprsjprs.2017.10.012
25 Esch, T., Bachofer, F., Heldens, W., Hirner, A., Marconcini, M., Palacios‐Lopez, D., Roth, A., Üreyen, S., Zeidler, J., Dech, S., and Gorelick, N. (2018). Where we live—a summary of the achievements and planned evolution of the global urban footprint. Remote Sensing 10(6): 895. doi:10.3390/rs10060895
26 Fang, C., Liu, H., Li, G., Sun, D., and Miao, Z. (2015). Estimating the impact of urbanization on air quality in China using spatial regression models. Sustainability 7(12): 15570–15592. doi:10.3390/su71115570.
27 Gamba, P., and Houshmand, B. (2002). Joint analysis of SAR, LIDAR and aerial imagery for simultaneous extraction of land cover, DTM and 3D shape of buildings. International Journal of Remote Sensing 23(20): 4439–4450. doi:10.1080/01431160110114952.
28 Gamba, P., Dell'Acqua, F., and Dasarathy, B.V. (2005). Urban remote sensing using multiple data sets: past, present, and future. Information Fusion 6: 319–326. doi:10.1016/j.inffus.2005.02.007.
29 Geiß, C., Leichtle, T., Wurm, M., Pelizari, P.A., Standfuß, I., Zhu, X.X., So, E., Siedentop, S., Esch, T., and Taubenbock, H. (2019). Large‐area characterization of urban morphology—mapping of built‐up height and density using TanDEM‐X and Sentinel‐2 data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12(8): 2912–2927. doi:10.1109/JSTARS.2019.2917755.
30 Golovinskiy, A., Kim, V.G., and Funkhouser, T. (2009). Shape‐based recognition of 3D point clouds in urban environments. IEEE 12th International Conference on Computer Vision 2154–2161. doi:10.1109/ICCV.2009.5459471.
31 Groisman, P., Shugart, H., Kicklighter, D., Henebry, G., Tchebakova, N., Maksyutov, S., Monier, E., Gutman, G., Gulev, S., Qi, J., Prishchepov, A., Kukavskaya, E., Porfiriev, B., Shiklomanov, A., Loboda, T., Shiklomanov, N., Nghiem, S., Bergen, K., Albrechtová, J., Chen, J., Shahgedanova, M., Shvidenko, A., Speranskaya, N., Soja, A., de Beurs, K, Bulygina, O., McCarty, J., Zhuang, Q., and Zolina, O. (2017). Northern Eurasia future initiative (NEFI): facing the challenges and pathways of global change in the 21st century. Progress in Earth and Planetary Science 4: 41. doi:10.1186/s40645‐017‐0154‐5.
32 Gutman, G., Janetos, A.C., Justice, C.O., Moran, E.F., Mustard, J.F., Rindfuss, R.R., Skole, D., Turner, B.L. (eds.) (2004). Land Change Science: Observing, Monitoring and Understanding Trajectories of Change on the Earth's Surface. New York: Kluwer Academic.
33 Habib, A.F., Kersting, J., McCaffrey, T.M., and Jarvis, A.M.Y. (2008). Integration of LiDAR and airborne imagery for realistic visualization of 3D urban environments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVII (Part B2): 617–623.
34 Henderson, F.M., and Xia, Z.G. (1998). Radar applications in urban analysis, settlement detection and population analysis. In: Henderson, F.M., Lewis, A.J. (eds.), Principles and Applications of Imaging Radar 733–768. New York: Wiley.
35 Imhoff, M.L., Zhang, P., Wolfe, R.E., and Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment 114(3): 504–513. doi:10.1016/j.rse.2009.10.008.
36 Jacobson, M.Z., Nghiem, S.V., Sorichetta, A., and Whitney, N. (2015). Ring of impact from the mega‐urbanization of Beijing between 2000 and 2009. Journal of Geophysical Research: Atmospheres 120: 5740–5756. doi:10.1002/2014JD023008.
37 Jacobson, M.Z., Nghiem, S.V., and Sorichetta, A. (2019). Short‐term impacts of the megaurbanizations of New Delhi and Los Angeles between 2000 and 2009. Journal of Geophysical Research: Atmospheres 124: 35–56. doi:10.1029/2018JD029310.
38 JPL (Jet Propulsion Laboratory) (2006). QuikSCAT Science Data Product user's Manual. Jet Propulsion Laboratory Document D‐18053‐RevA. Pasadena, CA: NASA Jet Propulsion Laboratory, California Institute of Technology.
39 Kaufmann, R.K., Seto, K.C., Schneider, A., Liu, Z., Zhou, L., and Wang, W. (2007). Climate response to rapid urban growth: evidence of a human‐induced precipitation deficit. Journal of Climate 20(10): 2299–2306. doi:10.1175/JCLI4109.1.
40 Leinenkugel, P., Esch, T., and Kuenzer, C. (2011). Settlement detection and impervious surface estimation in the Mekong Delta using optical and SAR remote sensing data. Remote Sensing of Environment 115(12): 3007–3019. doi:10.1016/j.rse.2011.06.004.
41 Li, M., Koks, E., Taubenböck, H., and van Vliet, J. (2020). Continental‐scale mapping and analysis of 3D building structure. Remote Sensing of Environment 245: 111859. doi:10.1016/j.rse.2020.111859.
42 Lukac, N., Seme, S., Zlaus, D., Stumberger, G., and Zalik, B. (2014). Building roofs potential assessment based on LiDAR (light detection and ranging) data. Energy 66: 598–609. doi:10.1016/j.energy.2013.066.
43 Marin, C., Bovolo, F., and Bruzzone, L. (2015). Building change detection in multitemporal very high resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing 53(5): 2664–2682. doi:10.1109/TGRS.2014.2363548.
44 Masek, J.G., Lindsay, F.E., and Goward, S.N. (2000). Dynamics of urban growth in the Washington DC metropolitan area, 1973‐1996, from Landsat observations. International Journal of Remote Sensing 21(18): 3473–3486. doi:10.1080/014311600750037507.
45 Masetti, M., Nghiem, S.V., Sorichetta, A., Stevennazi, S., Fabbri, P., Pola, M., Filippini, M., and Brakenridge, G.R. (2015). Investigating urban changes and environmental impacts in Italy. Eos, Earth & Space Science News 96(21): 13–16.
46 Mathews, A.J., and Frazier, A.E. (2017). Unmanned aerial systems. In: J.P. Wilson (ed.), The Geographic Information Science & Technology Body of Knowledge (2nd Quarter 2017). Ithaca, NY: University Consortium for Geographic Information Science (UCGIS). doi:10.22224/gistbok/2017.2.4.
47 Mathews, A.J., Frazier, A.E., Nghiem, S.V., Neumann, G., and Zhao, Y. (2019). Satellite scatterometer estimation of urban built‐up volume: validation with airborne lidar data. International Journal of Applied Earth Observation and Geoinformation 77: 100–107. doi:10.1016/j.jag.2019.01.004.
48 Moussavi, M.S., Abdalati, W., Scambos, T., and Neuenschwander, A. (2014). Applicability of an automatic surface detection approach to micro‐pulse photon‐counting lidar altimetry data: implications for canopy height retrieval from future ICESat‐2 data. International Journal of Remote Sensing 35: 5263–5279. doi:10.1080/01431161.2014.939780.
49 Myint, S.W., Gober, P., Brazel, A., Grossman‐Clarke, S., and Weng, Q. (2011). Per‐pixel vs. object‐based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment 115(5): 1145–1161. doi:10.1016/j.rse.2010.12.017.
50 NASEM (National Academies of Sciences, Engineering, and Medicine) (2018). Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. Washington, DC: The National Academies Press. doi:10.17226/24938.
51 Nghiem, S.V., and van Zyl, J.J. (1997). Theory for polarimetric interferometry. Proceedings of Progress in Electromagnetics Research Symposium (Cambridge, MA) 205.
52 Nghiem, S.V., Balk, D., Rodriguez, E., Neumann, G., Sorichetta, A., Small, C., and Elvidge, C. (2009). Observations of urban and suburban environments with global satellite scatterometer data. ISPRS Journal of Photogrammetry and Remote Sensing 64(4): 367–380.
53 Nghiem, S.V. (2015). Global mega urbanization and impacts in the 2000s. IEEE International Geoscience and Remote Sensing Symposium (Milan, Italy) 83–85. doi:10.1109/IGARSS.2015.7325703.
54 Nghiem, S.V., Small, C., Jacobson, M.Z., Brakenridge, G.R., Balk, D., Sorichetta, A., Masetti, M., Gaughan, A.E., Stevens, F. R., Mathews, A.J., Frazier, A.E., and Das, N.N. (2017). Multi‐sourced satellite observations of land cover and land use change in south and Southeast Asia with challenging environmental and socioeconomic impacts. Abstract GC51D‐0834 Presented at the 2017 AGU Fall Meeting (San Francisco, CA, 11–15 December).
55 Nghiem, S.V. and Science Team (2019). Land and Sea Environmental Changes and Impacts Observed by NASA and International Radars in Synergy with Multitype Sensors, Earth Science and Applications of Satellite X‐Band Synthetic Aperture Radars in Synergy with Multi‐Frequency Sensors, Surface Networks, and Modeling (Hanoi, Vietnam, 20–22 February 2019).
56 Nguyen, L.H., Nghiem, S.V., and Henebry, G.M. (2018). Expansion of major urban areas in the US Great Plains from 2000 to 2009 using satellite scatterometer data. Remote Sensing of Environment 204: 524–533. doi:10.1016/j.rse.2017.10.004.
57 Palmer, T.C., and Shan, J. (2002). A comparative study on urban visualization using LIDAR data in GIS. URISA Journal 14(2): 19–25.
58 Paloscia, S., Pettinato, S., and Santi, E. (2019). Applications of COSMO‐SkyMed Coherence Data for the Detection of Urban Changes in Southeast Asia, Earth Science and Applications of Satellite X‐Band Synthetic Aperture Radars in Synergy with Multi‐Frequency Sensors, Surface Networks, and Modeling (Hanoi, Vietnam, 20–22 February 2019).
59 Priestnall, G., Jaafar, J., and Duncan, A. (2000). Extracting urban features from LiDAR digital surface models. Computers, Environment and Urban Systems 24: 65–78. doi:10.1016/S0198‐9715(99)00047‐2.
60 Qi, W., and Dubayah, R.O. (2016). Combining tandem‐X InSAR and simulated GEDI lidar observations for forest structure mapping. Remote Sensing of Environment 187: 253–266. doi:10.1016/j.rse.2016.10.018.
61 Qiu, C., Schmitt, M., and Zhu, X.X. (2018). Towards automatic SAR‐optical stereogrammetry over urban areas using very high resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing 138: 218–231. doi:10.1016/j.isprsjprs.2017.12.006.
62 Rottensteiner, F., and Briese, C. (2002). A new method for building extraction in urban areas from high‐resolution LiDAR data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34(3/A): 295–301.
63 Schmidt, M., Esch, T., Klein, D., Thiel, M., and Dech, S. (2010). Estimation of building density using Terrasar‐X‐Data. 2010 IEEE International Geoscience and Remote Sensing Symposium (Honolulu) 1936–1939. doi:10.1109/IGARSS.2010.5649543.
64 Şen, Z. (ed.) (2017). Spatial trend analysis. In: Innovative Trend Methodologies in Science and Engineering, New York: Springer. doi:10.1007/978‐3‐319‐52338‐5_6.
65 Seto, K.C., Guneralp, B., and Hutyra, L.R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences 109(40): 16083–16088. doi:10.1073/pnas.1211658109.
66 Shan, J., and Toth, C.K. (2018). Topographic Laser Ranging and Scanning: Principles and Processing. Boca Raton, FL: CRC Press.
67 Small, C., and Elvidge. C.D. (2013). Night on earth: mapping decadal changes of anthropogenic night light in Asia. International Journal of Applied Earth Observation and Geoinformation 22: 40–52. doi:10.1016/j.jag.2012.02.009.
68 Soergel, U., Schulz, K., Thoennessen, U., and Stilla, U. (2003). Determination of optimal SAR illumination aspects in build‐up areas. 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Proceedings 6: 3662–3664. doi:10.1109/IGARSS.2003.1295230.
69 Sorichetta, A., Nghiem, S.V., Masetti, M., Linard, C., and Richter, A. (2020). Transformative urban changes of Beijing in the decade of the 2000s. Remote Sensing 12(4): 652. doi:10.3390/rs12040652, 2020.
70 Sportouche, H., Tupin, F., and Denise, L. (2011). Extraction and three‐dimensional reconstruction of isolated buildings in urban scenes from high‐resolution optical and SAR spaceborne images. IEEE Transactions on Geoscience and Remote Sensing 49(10): 3932–3946. doi:10.1109/TGRS.2011.2132727.
71 Stal, C. Tack, F., De Maeyer, P., De Wulf, A., and Goossens, R. (2013). Airborne photogrammetry and lidar for DSM extraction and 3D change detection over an urban area – a comparative study. International Journal of Remote Sensing 34(4): 1087–1110. doi:10.1080/01431161.2012.717183.
72 Stevenazzi, S., Masetti, M., Nghiem, S.V., and Sorichetta, A. (2014). Use of scatterometer data in groundwater vulnerability assessment. Rendiconti Online: Della Societa Geologica Italiana 30: 45–50. doi:10.3301/ROL.2014.10.
73 Stevenazzi, S., Masetti, M., Nghiem, S.V., and Sorichetta, A. (2015). Groundwater vulnerability maps derived from time dependent method using satellite scatterometer data. Hydrogeology Journal 23(4): 631–647. doi:10.1007/s10040‐015‐1236‐3.
74 Stevenazzi, S., Bonfanti, M., Masetti, M., Nghiem, S.V., and Sorichetta, A. (2017). A versatile method for groundwater vulnerability projections in future scenarios. Journal of Environmental Management 187: 365–374. doi:10.1016/j.jenvman.2016.10.057.
75 Strozzi, T., and Wegmuller, U. (1998). Delimitation of urban areas with SAR interferometry. 1998 IEEE International Geoscience and Remote Sensing. Symposium (IGARSS) Proceedings 3: 1632–1634. doi: 10.1109/IGARSS.1998.691660.
76 Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., and Dech, S. (2012). Monitoring urbanization in mega cities from space. Remote Sensing of Environment 117: 162–176. doi:10.1016/j.rse.2011.09.015.
77 Taubenböck, H., Weigand, M., Esch, T., Staab, J., Wurm, M., Mast, J., and Dech, S. (2019) A new ranking of the world's largest cities—do administrative units obscure morphological realities? Remote Sensing of Environment 232: 111353. doi:10.1016/j.rse.2019.111353.
78 Teo, T.A., and Shih, T.Y. (2013). Lidar‐based change detection and change‐type analysis determination in urban areas. International Journal of Remote Sensing, 34(3): 968–981. doi:10.1080/01431161.2012.714504.
79 Thiele, A., Cadario, E., Schulz, K., Thonnessen, U., and Soergel, U. (2007). Building recognition from multi‐aspect high‐resolution InSAR data in urban areas. IEEE Transactions on Geoscience and Remote Sensing 45(11): 3583–3593. doi:10.1109/TGRS.2007.898440.
80 Tsang, L., Kong, J.A., and Shin, R.T. (1985). Theory of Microwave Remote Sensing. Hoboken, NJ: Wiley‐Interscience.
81 Ulaby, F.T., Moore, R.K., and Fung, A.K. (1986). Microwave Remote Sensing Active and Passive, Vol. I‐III. Norwood, MA: Artech House.
82 United Nations (2014). World Urbanization Prospects: The 2014 Revision ‐ Highlights. New York: United Nations.
83 US Census (2019). United States Census Bureau – American FactFinder. https://factfinder.census.gov (accessed 17 December 2019).
84 Vu, T.T., Matsuoka, M., and Yamazaki, F. (2004). LIDAR‐based change detection of buildings in dense urban areas. IEEE International Geoscience and Remote Sensing Symposium 3413–3416. doi:10.1109/IGARSS.2004.1370438.
85 Wentz, E.A., York, A.M., Alberti, M., Conrow, L., Fischer, H., Inostroza, L., Jantz, C., Pickett, S.T.A., Seto, K.C., and Taubenbock, H. (2018). Six fundamental aspects for conceptualizing multidimensional urban form: a spatial mapping perspective. Landscape and Urban Planning 179: 55–62. doi:10.1016/j.landurbplan.2018.07.007.
86 Wu, Q., Chen, R., Sun, H., and Cao, Y. (2011). Urban building density detection using high resolution SAR imagery. 2011 Joint Urban Remote Sensing Event (Munich), 45–48. doi:10.1109/JURSE.2011.5764715.
87 Yu, B., Liu, H., Wu, J., and Lin, W.M. (2009). Investigating impacts of urban morphology on spatio‐temporal variations of solar radiation with airborne LIDAR data and a solar flux model: a case study of downtown Houston. International Journal of Remote Sensing 30(17): 4359–4385. doi:10.1080/01431160802555846.
88 Zha, Y., Gao, J., and Ni, S. (2003). Use of normalized difference built‐up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing 24(3): 583–594. doi:10.1080/01431160304987.
89 Zhang, Q., and Seto, K.C. (2013). Can night‐time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sensing 5(7): 3476–3494. doi:10.3390/rs5073476.
90 Zhao, Y., Ovando‐Montejo, G.A, Frazier, A.E., Mathews, A.J., Flynn, K.C., and Ellis, E.A. (2017). Estimating home and work population using lidar‐derived building volumes. International Journal of Remote Sensing 38(4): 1180–1196. doi:10.1080/01431161.2017.1280634.