Human Communication Technology

Human Communication Technology
Автор книги: id книги: 2189010     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 22501,6 руб.     (219,36$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Программы Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119752158 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

HUMAN COMMUNICATION TECHNOLOGY A unique book explaining how perception, location, communication, cognition, computation, networking, propulsion, integration of federated Internet of Robotic Things (IoRT) and digital platforms are important components of new-generation IoRT applications through continuous, real-time interaction with the world. The 16 chapters in this book discuss new architectures, networking paradigms, trustworthy structures, and platforms for the integration of applications across various business and industrial domains that are needed for the emergence of intelligent things (static or mobile) in collaborative autonomous fleets. These new apps speed up the progress of paradigms of autonomous system design and the proliferation of the Internet of Robotic Things (IoRT). Collaborative robotic things can communicate with other things in the IoRT, learn independently, interact securely with the world, people, and other things, and acquire characteristics that make them self-maintaining, self-aware, self-healing, and fail-safe operational. Due to the ubiquitous nature of collaborative robotic things, the IoRT, which binds together the sensors and the objects of robotic things, is gaining popularity. Therefore, the information contained in this book will provide readers with a better understanding of this interdisciplinary field. Audience Researchers in various fields including computer science, IoT, artificial intelligence, machine learning, and big data analytics.

Оглавление

Группа авторов. Human Communication Technology

Table of Contents

Guide

List of Illustrations

List of Tables

Pages

Human Communication Technology. Internet of Robotic Things and Ubiquitous Computing

Preface

1. Internet of Robotic Things: A New Architecture and Platform

1.1 Introduction

1.1.1 Architecture

1.1.1.1 Achievability of the Proposed Architecture

1.1.1.2 Qualities of IoRT Architecture

1.1.1.3 Reasonable Existing Robots for IoRT Architecture

1.2 Platforms. 1.2.1 Cloud Robotics Platforms

1.2.2 IoRT Platform

1.2.3 Design a Platform

1.2.4 The Main Components of the Proposed Approach

1.2.5 IoRT Platform Design

1.2.6 Interconnection Design

1.2.7 Research Methodology

1.2.8 Advancement Process—Systems Thinking

1.2.8.1 Development Process

1.2.9 Trial Setup-to Confirm the Functionalities

1.3 Conclusion

1.4 Future Work

References

2. Brain–Computer Interface Using Electroencephalographic Signals for the Internet of Robotic Things

2.1 Introduction

2.2 Electroencephalography Signal Acquisition Methods

2.2.1 Invasive Method

2.2.2 Non-Invasive Method

2.3 Electroencephalography Signal-Based BCI

2.3.1 Prefrontal Cortex in Controlling Concentration Strength

2.3.2 Neurosky Mind-Wave Mobile

2.3.2.1 Electroencephalography Signal Processing Devices

2.3.3 Electromyography Signal Extraction of Features and Its Signal Classifications

2.4 IoRT-Based Hardware for BCI

2.5 Software Setup for IoRT

2.6 Results and Discussions

2.7 Conclusion

References

3. Automated Verification and Validation of IoRT Systems

3.1 Introduction

3.1.1 Automating V&V—An Important Key to Success

3.2 Program Analysis of IoRT Applications

3.2.1 Need for Program Analysis

3.2.2 Aspects to Consider in Program Analysis of IoRT Systems

3.3 Formal Verification of IoRT Systems

3.3.1 Automated Model Checking

3.3.2 The Model Checking Process

3.3.2.1 PRISM

3.3.2.2 UPPAAL

3.3.2.3 SPIN Model Checker

3.3.3 Automated Theorem Prover

3.3.3.1 ALT-ERGO

3.3.4 Static Analysis

3.3.4.1 CODESONAR

3.4 Validation of IoRT Systems

3.4.1 IoRT Testing Methods

3.4.2 Design of IoRT Test

3.5 Automated Validation

3.5.1 Use of Service Visualization

3.5.2 Steps for Automated Validation of IoRT Systems

3.5.3 Choice of Appropriate Tool for Automated Validation

3.5.4 IoRT Systems Open Source Automated Validation Tools

3.5.5 Some Significant Open Source Test Automation Frameworks

3.5.6 Finally IoRT Security Testing

3.5.7 Prevalent Approaches for Security Validation

3.5.8 IoRT Security Tools

References

4. Light Fidelity (Li-Fi) Technology: The Future Man–Machine–Machine Interaction Medium

4.1 Introduction

4.1.1 Need for Li-Fi

4.2 Literature Survey

4.2.1 An Overview on Man-to-Machine Interaction System

4.2.2 Review on Machine to Machine (M2M) Interaction

4.2.2.1 System Model

4.3 Light Fidelity Technology

4.3.1 Modulation Techniques Supporting Li-Fi

4.3.1.1 Single Carrier Modulation (SCM)

4.3.1.2 Multi Carrier Modulation

4.3.1.3 Li-Fi Specific Modulation

4.3.2 Components of Li-Fi

4.3.2.1 Light Emitting Diode (LED)

4.3.2.2 Photodiode

4.3.2.3 Transmitter Block

4.3.2.4 Receiver Block

4.4 Li-Fi Applications in Real Word Scenario. 4.4.1 Indoor Navigation System for Blind People

4.4.2 Vehicle to Vehicle Communication

4.4.3 Li-Fi in Hospital

4.4.4 Li-Fi Applications for Pharmacies and the Pharmaceutical Industry

4.4.5 Li-Fi in Workplace

4.5 Conclusion

References

5. Healthcare Management-Predictive Analysis (IoRT)

5.1 Introduction

5.1.1 Naive Bayes Classifier Prediction for SPAM

5.1.2 Internet of Robotic Things (IoRT)

5.2 Related Work

5.3 Fuzzy Time Interval Sequential Pattern (FTISPAM)

5.3.1 FTI SPAM Using GA Algorithm

5.3.1.1 Chromosome Generation

5.3.1.2 Fitness Function

5.3.1.3 Crossover

5.3.1.4 Mutation

5.3.1.5 Termination

5.3.2 Patterns Matching Using SCI

5.3.3 Pattern Classification Based on SCI Value

5.3.4 Significant Pattern Evaluation

5.4 Detection of Congestive Heart Failure Using Automatic Classifier

5.4.1 Analyzing the Dataset

5.4.2 Data Collection

5.4.2.1 Long-Term HRV Measures

5.4.2.2 Attribute Selection

5.4.3 Automatic Classifier—Belief Network

5.5 Experimental Analysis

5.6 Conclusion

References

6. Multimodal Context-Sensitive Human Communication Interaction System Using Artificial Intelligence-Based Human-Centered Computing

6.1 Introduction

6.2 Literature Survey

6.3 Proposed Model

6.3.1 Multimodal Data

6.3.2 Dimensionality Reduction

6.3.3 Principal Component Analysis

6.3.4 Reduce the Number of Dimensions

6.3.5 CNN

6.3.6 CNN Layers

6.3.6.1 Convolution Layers

6.3.6.2 Padding Layer

6.3.6.3 Pooling/Subsampling Layers

6.3.6.4 Nonlinear Layers

6.3.7 ReLU

6.3.7.1 Fully Connected Layers

6.3.7.2 Activation Layer

6.3.8 LSTM

6.3.9 Weighted Combination of Networks

6.4 Experimental Results

6.4.1 Accuracy

6.4.2 Sensibility

6.4.3 Specificity

6.4.4 A Predictive Positive Value (PPV)

6.4.5 Negative Predictive Value (NPV)

6.5 Conclusion

6.6 Future Scope

References

7. AI, Planning and Control Algorithms for IoRT Systems

7.1 Introduction

7.2 General Architecture of IoRT

7.2.1 Hardware Layer

7.2.2 Network Layer

7.2.3 Internet Layer

7.2.4 Infrastructure Layer

7.2.5 Application Layer

7.3 Artificial Intelligence in IoRT Systems

7.3.1 Technologies of Robotic Things

7.3.2 Artificial Intelligence in IoRT

7.4 Control Algorithms and Procedures for IoRT Systems

7.4.1 Adaptation of IoRT Technologies

7.4.2 Multi-Robotic Technologies

7.5 Application of IoRT in Different Fields

References

8. Enhancements in Communication Protocols That Powered IoRT

8.1 Introduction

8.2 IoRT Communication Architecture

8.2.1 Robots and Things

8.2.2 Wireless Link Layer

8.2.3 Networking Layer

8.2.4 Communication Layer

8.2.5 Application Layer

8.3 Bridging Robotics and IoT

8.4 Robot as a Node in IoT

8.4.1 Enhancements in Low Power WPANs

8.4.1.1 Enhancements in IEEE 802.15.4

8.4.1.2 Enhancements in Bluetooth

8.4.1.3 Network Layer Protocols

8.4.2 Enhancements in Low Power WLANs

8.4.2.1 Enhancements in IEEE 802.11

8.4.3 Enhancements in Low Power WWANs

8.4.3.1 LoRaWAN

8.4.3.2 5G

8.5 Robots as Edge Device in IoT

8.5.1 Constrained RESTful Environments (CoRE)

8.5.2 The Constrained Application Protocol (CoAP)

8.5.2.1 Latest in CoAP

8.5.3 The MQTT-SN Protocol

8.5.4 The Data Distribution Service (DDS)

8.5.5 Data Formats

8.6 Challenges and Research Solutions

8.7 Open Platforms for IoRT Applications

8.8 Industrial Drive for Interoperability

8.8.1 The Zigbee Alliance

8.8.2 The Thread Group

8.8.3 The WiFi Alliance

8.8.4 The LoRa Alliance

8.9 Conclusion

References

9. Real Time Hazardous Gas Classification and Management System Using Artificial Neural Networks

9.1 Introduction

9.2 Existing Methodology

9.3 Proposed Methodology

9.4 Hardware & Software Requirements. 9.4.1 Hardware Requirements. 9.4.1.1 Gas Sensors Employed in Hazardous Detection

9.4.1.2 NI Wireless Sensor Node 3202

9.4.1.3 NI WSN Gateway (NI 9795)

9.4.1.4 COMPACT RIO (NI-9082)

9.5 Experimental Setup

9.5.1 Data Set Preparation

9.5.2 Artificial Neural Network Model Creation

9.6 Results and Discussion

9.7 Conclusion and Future Work

References

10. Hierarchical Elitism GSO Algorithm For Pattern Recognition

10.1 Introduction

10.2 Related Works

10.3 Methodology

10.3.1 Additive Kuan Speckle Noise Filtering Model

10.3.2 Hierarchical Elitism Gene GSO of MNN in Pattern Recognition

10.4 Experimental Setup

10.5 Discussion

10.5.1 Scenario 1: Computational Time

10.5.2 Scenario 2: Computational Complexity

10.5.3 Scenario 3: Pattern Recognition Accuracy

10.6 Conclusion

References

11. Multidimensional Survey of Machine Learning Application in IoT (Internet of Things)

11.1 Machine Learning—An Introduction

11.1.1 Classification of Machine Learning

11.2 Internet of Things

11.3 ML in IoT. 11.3.1 Overview

11.4 Literature Review

11.5 Different Machine Learning Algorithm

11.5.1 Bayesian Measurements

11.5.2 K-Nearest Neighbors (k-NN)

11.5.3 Neural Network

11.5.4 Decision Tree (DT)

11.5.5 Principal Component Analysis (PCA) t

11.5.6 K-Mean Calculations

11.5.7 Strength Teaching

11.6 Internet of Things in Different Frameworks

11.6.1 Computing Framework

11.6.1.1 Fog Calculation

11.6.1.2 Estimation Edge

11.6.1.3 Distributed Computing

11.6.1.4 Circulated Figuring

11.7 Smart Cities

11.7.1 Use Case

11.7.1.1 Insightful Vitality

11.7.1.2 Brilliant Portability

11.7.1.3 Urban Arranging

11.7.2 Attributes of the Smart City

11.8 Smart Transportation

11.8.1 Machine Learning and IoT in Smart Transportation

11.8.2 Markov Model

11.8.3 Decision Structures

11.9 Application of Research. 11.9.1 In Energy

11.9.2 In Routing

11.9.3 In Living

11.9.4 Application in Industry

11.10 Machine Learning for IoT Security

11.10.1 Used Machine Learning Algorithms

11.10.2 Intrusion Detection

11.10.3 Authentication

11.11 Conclusion

References

12. IoT-Based Bias Analysis in Acoustic Feedback Using Time-Variant Adaptive Algorithm in Hearing Aids

12.1 Introduction

12.2 Existence of Acoustic Feedback

12.2.1 Causes of Acoustic Feedback

12.2.2 Amplification of Feedback Process

12.3 Analysis of Acoustic Feedback

12.3.1 Frequency Analysis Using Impulse Response

12.3.2 Feedback Analysis Using Phase Difference

12.4 Filtering of Signals. 12.4.1 Digital Filters

12.4.2 Adaptive Filters

12.4.2.1 Order of Adaptive Filters

12.4.2.2 Filter Coefficients in Adaptive Filters

12.4.3 Adaptive Feedback Cancellation

12.4.3.1 Non-Continuous Adaptation

12.4.3.2 Continuous Adaptation

12.4.4 Estimation of Acoustic Feedback

12.4.5 Analysis of Acoustic Feedback Signal. 12.4.5.1 Forward Path of the Signal

12.4.5.2 Feedback Path of the Signal

12.4.5.3 Bias Identification

12.5 Adaptive Algorithms

12.5.1 Step-Size Algorithms

12.5.1.1 Fixed Step-Size

12.5.1.2 Variable Step-Size

12.6 Simulation. 12.6.1 Training of Adaptive Filter for Removal of Acoustic Feedback

12.6.2 Testing of Adaptive Filter. 12.6.2.1 Subjective and Objective Evaluation Using KEMAR

12.6.2.2 Experimental Setup Using Manikin Channel

12.7 Performance Evaluation

12.8 Conclusions

References

13. Internet of Things Platform for Smart Farming

13.1 Introduction

13.2 History

13.3 Electronic Terminologies

13.3.1 Input and Output Devices

13.3.2 GPIO

13.3.3 ADC

13.3.4 Communication Protocols

13.3.4.1 UART

13.3.4.2 I2C

13.3.4.3 SPI

13.4 IoT Cloud Architecture

13.4.1 Communication From User to Cloud Platform

13.4.2 Communication From Cloud Platform To IoT Device

13.5 Components of IoT

13.5.1 Real-Time Analytics

13.5.1.1 Understanding Driving Styles

13.5.1.2 Creating Driver Segmentation

13.5.1.3 Identifying Risky Neighbors

13.5.1.4 Creating Risk Profiles

13.5.1.5 Comparing Microsegments

13.5.2 Machine Learning

13.5.2.1 Understanding the Farm

13.5.2.2 Creating Farm Segmentation

13.5.2.3 Identifying Risky Factors

13.5.2.4 Creating Risk Profiles

13.5.2.5 Comparing Microsegments

13.5.3 Sensors

13.5.3.1 Temperature Sensor

13.5.3.2 Water Quality Sensor

13.5.3.3 Humidity Sensor

13.5.3.4 Light Dependent Resistor

13.5.4 Embedded Systems

13.6 IoT-Based Crop Management System

13.6.1 Temperature and Humidity Management System

13.6.1.1 Project Circuit

13.6.1.1.1 DHT-11 Temperature and Humidity Sensor

13.6.1.1.2 Arduino Soil and Moisture Level Sensor

13.6.1.1.3 Raspberry Pi 4 Model B

13.6.1.1.4 Analog to Digital Converters (ADS1115)

13.6.1.2 Connections

13.6.1.3 Program

13.6.1.3.1 ADS1115 Software Installation

13.6.1.3.2 Program Code

13.6.2 Water Quality Monitoring System

13.6.2.1 Dissolved Oxygen Monitoring System

13.6.2.1.1 Connections

13.6.2.1.2 Program Code [13]

13.6.2.2 pH Monitoring System

13.6.2.2.1 Connections

13.6.2.2.2 Program Code [13]

13.6.3 Light Intensity Monitoring System

13.6.3.1 Project Circuit

13.6.3.2 Connections

13.6.3.3 Program Code

13.7 Future Prospects

13.8 Conclusion

References

14. Scrutinizing the Level of Awareness on Green Computing Practices in Combating Covid-19 at Institute of Health Science-Gaborone

14.1 Introduction

14.1.1 Institute of Health Science-Gaborone

14.1.2 Research Objectives

14.1.3 Green Computing

14.1.4 Covid-19

14.1.5 The Necessity of Green Computing in Combating Covid-19

14.1.6 Green Computing Awareness

14.1.7 Knowledge

14.1.8 Attitude

14.1.9 Behavior

14.2 Research Methodology

14.2.1 Target Population

14.2.2 Sample Frame

14.2.3 Questionnaire as a Data Collection Instrument

14.2.4 Validity and Reliability

14.3 Analysis of Data and Presentation

14.3.1 Demographics: Gender and Age

14.3.2 How Effective is Green Computing Policies in Combating Covid-19 at Institute of Health Science-Gaborone?

14.3.3 What are Green Computing Practices Among Users at Gaborone Institute of Health Science?

14.3.4 What is the Role of Green Computing Training in Combating Covid-19 at Institute of Health Science-Gaborone?

14.3.5 What is the Likelihood of Threats Associated With a Lack of Awareness on Green Computing Practices While Combating Covid-19?

14.3.6 What is the Level of User Conduct, Awareness and Attitude With Regard to Awareness on Green Computing Practices at Institute of Health Science-Gaborone?

14.4 Recommendations

14.4.1 Green Computing Policy

14.4.2 Risk Assessment

14.4.3 Green Computing Awareness Training

14.4.4 Compliance

14.5 Conclusion

References

15. Detailed Analysis of Medical IoT Using Wireless Body Sensor Network and Application of IoT in Healthcare

15.1 Introduction

15.2 History of IoT

15.3 Internet of Objects. 15.3.1 Definitions

15.3.2 Internet of Things (IoT): Data Flow

15.3.3 Structure of IoT—Enabling Technologies

15.4 Applications of IoT

15.5 IoT in Healthcare of Human Beings

15.5.1 Remote Healthcare—Telemedicine

15.5.2 Telemedicine System—Overview

15.6 Telemedicine Through a Speech-Based Query System

15.6.1 Outpatient Monitoring

15.6.2 Telemedicine Umbrella Service

15.6.3 Advantages of the Telemedicine Service

15.6.4 Some Examples of IoT in the Health Sector

15.7 Conclusion

15.8 Sensors

15.8.1 Classification of Sensors

15.8.2 Commonly Used Sensors in BSNs

15.8.2.1 Accelerometer

15.8.2.2 ECG Sensors

15.8.2.3 Pressure Sensors

15.8.2.4 Respiration Sensors

15.9 Design of Sensor Nodes

15.9.1 Energy Control

15.9.2 Fault Diagnosis

15.9.3 Reduction of Sensor Nodes

15.10 Applications of BSNs

15.11 Conclusions

15.12 Introduction

15.12.1 From WBANs to BBNs

15.12.2 Overview of WBAN

15.12.3 Architecture

15.12.4 Standards

15.12.5 Applications

15.13 Body-to-Body Network Concept

15.14 Conclusions

References

16. DCMM: A Data Capture and Risk Management for Wireless Sensing Using IoT Platform

16.1 Introduction

16.2 Background. 16.2.1 Internet of Things

16.2.2 Middleware Data Acquisition

16.2.3 Context Acquisition

16.3 Architecture. 16.3.1 Proposed Architecture

16.3.1.1 Protocol Adaption

ALGORITHM 1: Middleware framework algorithm

16.3.1.2 Device Management

16.3.1.3 Data Handler

16.4 Implementation. 16.4.1 Requirement and Functionality

16.4.1.1 Requirement

16.4.1.2 Functionalities

16.4.2 Adopted Technologies

16.4.2.1 Middleware Software

16.4.2.2 Usability Dependency

16.4.2.3 Sensor Node Software

16.4.2.4 Hardware Technology

16.4.2.5 Sensors

16.4.3 Details of IoT Hub

16.4.3.1 Data Poster

16.4.3.2 Data Management

16.4.3.3 Data Listener

16.4.3.4 Models

16.5 Results and Discussions

ALGORITHM 1: Data capturing algorithm

16.6 Conclusion

References

Index

Also of Interest. Check out these published and forthcoming related titles from Scrivener Publishing

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

.....

For e.g., show the use of the CPU and plate peruses and the Amazon EC2 cases and then use [24–26] to determine if additional cases can be submitted to deal with increased pressure. Use this information to avoid unused cases to remove cash. Through CloudWatch, a broad structure for the use, deployment and running health of infrastructure can be obtained.

The interconnection moves data between the administrations on different stage. The network use distribute/buy in informing design, simultaneous draw and nonconcurrent push informing designs.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Human Communication Technology
Подняться наверх