Читать книгу Human Communication Technology - Группа авторов - Страница 46
References
Оглавление1. Schmitt, S.E., Pargeon, K., Frechette, E.S., Hirsch, L.J., Dalmau, J., Friedman, D., Extreme delta brush: A unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology, 79, 11, 1094–1100, 2012.
2. Sudharsan, R.R., Deny, J., Kumaran, E.M., Geege, A.S., An Analysis of Different Biopotential Electrodes Used for Electromyography. 12, 1, 1–7, 2020.
3. Stanski, D.R., Pharmacodynamic modeling of anesthetic EEG drug effects. Annu. Rev. Pharmacol. Toxicol., 32, 1, 423–447, 1992.
4. Gillin, J.C., Duncan, W., Pettigrew, K.D., Frankel, B.L., Snyder, F., Successful separation of depressed, normal, and insomniac subjects by EEG sleep data. Arch. Gen. Psychiatry, 36, 1, 85–90, 1979.
5. Adler, G., Brassen, S., Jajcevic, A., EEG coherence in Alzheimer’s dementia. J. Neural Transm., 110, 9, 1051–1058, 2003.
6. Sudharsan, R.R. and Deny, J., Field Programmable Gate Array (FPGA)-Based Fast and Low-Pass Finite Impulse Response (FIR) Filter, in: Intelligent Computing and Innovation on Data Science, pp. 199–206, 2020.
7. Alvarez, L.A., Moshé, S.L., Belman, A.L., Maytal, J., Resnick, T.J., Keilson, M., EEG and brain death determination in children. Neurology, 38, 2, 227, 1988.
8. Friedberg, J., Shock treatment, brain damage, and memory loss: A neurological perspective. Am. J. Psychiatry, 134, 9, 1010–1014, 1977.
9. Waldert, S., Invasive vs. non-invasive neuronal signals for brain–machine interfaces: Will one prevail? Front. Neurosci., 10, 1–4, 2016.
10. Burchiel, K.J., McCartney, S., Lee, A., Raslan, A.M., Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J. Neurosurg., 119, 2, 301–306, 2013.
11. Deny, J. and Sudharsan, R.R., Block Rearrangements and TSVs for a Standard Cell 3D IC Placement, in: Intelligent Computing and Innovation on Data Science, pp. 207–214, 2020.
12. Casdagli, M.C., Iasemidis, L.D., Savit, R.S., Gilmore, R.L., Roper, S.N., Sackellares, J.C., Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol., 102, 2, 98–105, 1997.
13. Onal, C. et al., Complications of invasive subdural grid monitoring in children with epilepsy. J. Neurosurg., 98, 5, 1017–1026, 2003.
14. Ball, T., Kern, M., Mutschler, I., Aertsen, A., Schulze-Bonhage, A., Signal quality of simultaneously recorded invasive and non-invasive EEG. Neuroimage, 46, 3, 708–716, 2009.
15. Pinegger, A., Wriessnegger, S.C., Faller, J., Müller-Putz, G.R., Evaluation of different EEG acquisition systems concerning their suitability for building a brain–computer interface: Case studies. Front. Neurosci., 10, 441, 2016.
16. Alotaiby, T., El-Samie, F.E.A., Alshebeili, S.A., Ahmad, I., A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process., 2015, 1, 66, 2015.
17. Hidalgo-Muñoz, A.R., López, M.M., Santos, I.M., Vázquez-Marrufo, M., Lang, E.W., Tomé, A.M., Affective valence detection from EEG signals using wrapper methods. Emotion and Attention Recognition Based on Biological Signals and Images, 12, p. 23, 2017.
18. Dash, M. and Liu, H., Feature selection for classification. Intell. Data Anal., 1, 131–156, 1997.
19. Liu, H. and Yu, L., Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng., 17, 491–502, 2005.
20. Klimesch, W., EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev., 29, 23, 169–195, 1999.
21. Woehrle, H., Krell, M.M., Straube, S., Kim, S.K., Kirchner, E.A., Kirchner, F., An adaptive spatial filter for user-independent single trial detection of event-related potentials. IEEE Trans. Biomed. Eng., 62, 7, 1696–1705, 2015.
22. Norcia, A.M., Appelbaum, L.G., Ales, J.M., Cottereau, B.R., Rossion, B., The steady-state visual evoked potential in vision research: A review. J. Vis., 15, 1–46, 2015.
23. Palani Thanaraj, K. and Chitra, K., Multichannel feature extraction and classification of epileptic states using higher order statistics and complexity measures. Int. J. Eng. Technol., 6, 1, 102–109, 2014.
24. Picton, T.W., The P300 wave of the human event-related potential. J. Clin. Neurophysiol., 9, 4, 456–479, 1992.
25. Krishna, R.R., Kumar, P.S., Sudharsan, R.R., Optimization of wire-length and block rearrangements for a modern IC placement using evolutionary techniques. IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, pp. 1–4, 2017.
26. Mayaud, L. et al., A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm. Neurophysiol. Clin., 43, 4, 217–227, 2013.
27. Nuwer, M.R., Dawson, E.G., Carlson, L.G., Kanim, L.E.A., Sherman, J.E., Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: Results of a large multicenter survey. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials, 96, 1, 6–11, 1995.
28. Turnip, A. and Hong, K.S., Classifying mental activities from EEG-P300 signals using adaptive neural networks. Int. J. Innov. Comput. Inf. Control, 8, 9, 6429–6443, 2012.
29. Sarma, P., Tripathi, P., Sarma, M.P., Sarma, K.K., Pre-processing and feature extraction techniques for EEGBCI applications—A review of recent research, ADBU. J. Eng. Technol., 5, 2348–7305, 2016.
30. Li, K., Sun, G., Zhang, B., Wu, S., Wu, G., Correlation between forehead EEG and sensorimotor area EEG in motor imagery task, in: Eighth IEEE Int. Symp. Dependable, Auton. Secur. Comput. DASC 2009, pp. 430–435, 2009.
31. Petrov, Y., Analysis of EEG signals for EEG-based brain-computer interface. PLoS One, 7, 10, e44439, 2012.
32. Adelmann, R., Langheinrich, M., Floerkemeier, C., A toolkit for bar code recognition and resolving on camera phones—Jump-starting the Internet of Things. In: Hochberger, C. and R. Liskowsky (Eds.), GI Jahrestagung. (2). LNI, GI, 94, 366–373, Informatik 2006, Dresden, Germany, 2006.
33. Arnsten, A.F.T., Berridge, C.W., McCracken, J.T., The neurobiological basis of attention-deficit/hyperactivity disorder. Prim. Psychiatry, 16, 47–54, 2009.
34. Baranyi, P. and Csapo, A., Definition and synergies of cognitive info communications. Acta Polytech. Hung., 9, 1, 67–83, 2012.
35. Baranyi, P., Csapo, A., Gyula, S., Cognitive info communications (CogInfoCom), p. 378, Springer, Heidelberg, 2015.
36. Benedek, A. and Molnar, G., Supporting them-learning based knowledge transfer in university education and corporate sector, in: Proceedings of the 10th international conference on mobile learning 2014, Madrid, Spain, pp. 339–343, 2014.
37. Brown, V.J. and Bowman, E.M., Rodent models of prefrontal cortical function. Trends Neurosci., 25, 340–343, 2002.
38. Cardinal, R.N., Parkinson, J.A., Hall, J., Everitt, B.J., Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev., 26, 321–352, 2002.
39. Cauda, F., Cavanna, A.E., Dágata, F., Sacco, K., Duca, S., Geminiani, G.C., Functional connectivity and coactivation of the nucleus accumbens: A combined functional connectivity and structure-based meta-analysis. J. Cognit. Neurosci., 23, 2864–2877, 2011.
40. Chen, F., Jia, Y., Xi, N., Non-invasive EEG based mental state identification using nonlinear combination, in: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2013, https://doi.org/10.1109/robio.2013.6739789.
41. Christian, F. et al., The Internet of Things, in: IoT 2008: First International Conference, Zurich, Switzerland, p. 4952, 378, 2008.
42. Dalley, J.W., Cardinal, R.N., Robbins, T.W., Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev., 28, 771–784, 2004.
43. Feenstra, M., Botterblom, M., Uum, J.V., Behavioral arousal and increased dopamine efflux after blockade of NMDA-receptors in the prefrontal cortex are dependent on activation of glutamatergic neurotransmission. Neuropharmacology, 42, 752–763, 2002.
44. Fortino, G., Agents meet the IoT: Toward ecosystems of networked smart objects. IEEE Syst. Man Cybern. Mag., 2, 43–47, 2016.
45. Freedman, M. and Oscar-Berman, M., Bilateral frontal lobe disease and selective delayed response deficits in humans. Behav. Neurosci., 100, 337–342, 1986.
46. Friedemann, M. and Christian, F., From the internet of computers to the internet of things, in: From active data management to event-based systems and more. Papers in Honor of Alejandro Buchmann on the Occasion of His 60th Birthday, vol. 6462, Sachs, K., Petrov, I., Guerrero, P. (Eds.), pp. 242–259, 2010.
47. Friganovic, K., Medved, M., Cifrek, M., Brain–computer interface based on steady-state visual evoked potentials, in: 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2016, https://doi.org/10.1109/mipro.
48. Gallo, D.A., Mcdonough, I.M., Scimeca, J., Dissociating source memory decisions in the prefrontal cortex: fMRI of diagnostic and disqualifying monitoring. J. Cognit. Neurosci., 22, 955–969, 2010.
49. Hakiri, A., Berthou, P., Gokhale, A., Abdellatif, S., Publish/subscribe-enabled software defined networking for efficient and scalable IoT communications. IEEE Commun. Mag., 53, 48–54, 2015.
50. Heidbreder, C.A. and Groenewegen, H.J., The medial prefrontal cortex in the rat: Evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci. Biobehav. Rev., 27, 555–579, 2003.
51. Horvath, I., Disruptive technologies in higher education, in: 2016 7th IEEE international conference on cognitive info communications, Wroclaw, Poland, pp. 347–352, 2016.
52. Horvath, I. and Kvasznicza, Z., Innovative engineering training—Today’s answer to the challenges of the future, in: 2016 International Education Conference, Venice, Italy, pp. 647-1–647-7, 2016.
53. Horvath, I., Innovative engineering education in the cooperative R environment, in: 2016 7th IEEE International Conference on Cognitive Info Communications (CogInfoCom), Wroclaw, Poland, pp. 359–364, 2016, https://doi.org/10.1109/CogInfoCom.2016.7804576.
54. Horvath, I., Digital life gap between students and lecturers, in: 2016 7th IEEE International Conference on Cognitive Info Communications (CogInfoCom), Wroclaw, Poland, pp. 353–358, 2016, https://doi.org/10.1109/CogInfoCom.2016.7804575.
55. Kalaivani, M., Kalaivani, V., Devi, V.A., Analysis of EEG signal for the detection of brain abnormalities. Int. J. Comput. Appl., 1, 2, 1–6, 2014.
56. Cárdenas-Barrera, J.L., Lorenzo-Ginori, J.V., Rodríguez-Valdivia, E., A wavelet-packets based algorithm for EEG signal compression. Inform. Health Soc. Care, 29, 1, 15–27, 2004.
57. Kameswara, T., Rajyalakshmi, M., Prasad, T.V., An exploration on brain computer interface and its recent trends. Int. J. Adv. Res. Artif. Intell., 1, 8, 17–22, 2013.
58. Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C.M., White, P.R., Signal processing techniques applied to human sleep EEG signals—A review. Biomed. Signal Process. Control, 10, 1, 21–33, 2014.
59. Vidaurre, C., Krämer, N., Blankertz, B., Schlögl, A., Time domain parameters as a feature for EEG-based brain-computer interfaces. Neural Networks, 22, 9, 1313–1319, 2009.
60. Chatterjee, S., Pratiher, S., Bose, R., Multifractal detrended fluctuation analysis-based novel feature extraction technique for automated detection of focal and non-focal electroencephalogram signals. IET Sci. Meas. Technol., 11, 8, 1014–1021, 2017.
61. Rejer, I., Genetic algorithms in EEG feature selection for the classification of movements of the left and right hand. Adv. Intell. Syst. Comput., 226, 9–11, 2013.
62. Alın, A., Kurt, S., Mcintosh, A.R., Ozg, M., Partial least squares analysis in electrical brain activity. J. Data Sci., 7, 99–110, 2009.
63. O’Brien, P., A primer on the discrete Fourier transform. Am. J. EEG Technol., 34, 4, 190–223, 2018.
64. Birvinskas, D., Jusas, V., Martišius, I., Damaševičius, R., Data compression of EEG signals for artificial neural network classification. Inf. Technol. Control, 42, 3, 238–241, 2013.
65. Chaurasiya, R.K., Londhe, N.D., Ghosh, S., Statistical wavelet features, PCA, and SVM based approach for EEG signals classification. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energy Electron. Commun. Eng., 9, 2, 182–186, 2015.
66. Kim, M. and Chang, S., A consumer transceiver for long-range IoT communications in emergency environments. IEEE Trans. Consum. Electron., 62, 3, 226–234, 2016.
67. Abdellatif, A.A., Khafagy, M.G., Mohamed, A., Chiasserini, C.F., EEG-based transceiver design with data decomposition for healthcare IoT applications. IEEE Internet Things J., 5, 5, 3569–579, 2018.
68. Fisher, R.S. et al., Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46, 4, 1–3, 2005.
69. Parvez, M.Z., Paul, M., Antolovich, M., Detection of pre-stage of epileptic seizure by exploiting temporal correlation of EMD decomposed EEG signals. J. Med. Bioeng., 4, 2, 110–116, 2015.
70. Abdulhay, E., Alafeef, M., Abdelhay, A., Al-Bashir, A., Classification of normal, ictal and inter-ictal EEG via direct quadrature and random forest tree. J. Med. Biol. Eng., 37, 6, 843–857, 2017.
71. Qaraqe, M., Ismail, M., Serpedin, E., Band-sensitive seizure onset detection via CSP enhanced EEG features. Epilepsy Behav., 50, 77–87, 2015.
72. Mutlu, A.Y., Detection of epileptic dysfunctions in EEG signals using Hilbert vibration decomposition. Biomed. Signal Process. Control, 40, 33–40, 2018.
73. Diykh, M., Li, Y., Wen, P., Classify epileptic EEG signals using weighted complex networks based community structure detection. Expert Syst. Appl., 90, 87–100, 2017.
74. Birjandtalab, J., Baran Pouyan, M., Cogan, D., Nourani, M., Harvey, J., Automated seizure detection using limited-channel EEG and non-linear dimension reduction. Comput. Biol. Med., 82, 49–58, 2017.
75. Albert, B. et al., Automatic EEG processing for the early diagnosis of traumatic brain injury. Proc. Comput. Sci., 96, 703–712, 2016.
76. Variane, G.F.T. et al., Early amplitude-integrated electroencephalography for monitoring neonates at high risk for brain injury. J. Pediatr. (Rio. J), 93, 5, 460–466, 2017.
77. Franke, L.M., Walker, W.C., Hoke, K.W., Wares, J.R., Distinction in EEG slow oscillations between chronic mild traumatic brain injury and PTSD. Int. J. Psychophysiol., 106, 21–29, 2016.
78. Weeke, L.C. et al., Role of EEG background activity, seizure burden and MRI in predicting neurodevelopmental outcome in full-term infants with hypoxicischaemic encephalopathy in the era of therapeutic hypothermia. Eur. J. Paediatr. Neurol., 20, 6, 855–864, 2016.
79. Nevalainen, P. et al., Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia. Clin. Neurophysiol., 128, 7, 1337–1343, 2017.
80. Subramanian, R.R. and Seshadri, K., Design and Evaluation of a Hybrid Hierarchical Feature Tree Based Authorship Inference Technique, in: Advances in Data and Information Sciences. Lecture Notes in Networks and Systems, Kolhe, M., Trivedi, M., Tiwari, S., Singh, V. (Eds.), p. 39, 2019.
81. Joshva Devadas, T. and Raja Subramanian, R., Paradigms for Intelligent IoT Architecture, in: Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. Intelligent Systems Reference Library, Peng, S.L., Pal, S., Huang, L. (Eds.), p. 174, 2020.
1 *Corresponding author: ajasudharsan@klu.ac.in