Читать книгу Microbial Interactions at Nanobiotechnology Interfaces - Группа авторов - Страница 59

References

Оглавление

1 Aboelzahab, A., Azad, A. M., Dolan, S., & Goel, V. (2012). Mitigation of Staphylococcus aureus‐mediated surgical site infections with IR photoactivated TiO2 coatings on Ti implants. Advanced Healthcare Materials, 1(3), 285–291.

2 Abraham, E. P., & Chain, E. (1940). An enzyme from bacteria able to destroy penicillin. Nature, 146(3713), 837.

3 Acharya, D., Singha, K. M., Pandey, P., Mohanta, B., Rajkumari, J., & Singha, L. P. (2018). Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Scientific Reports, 8(1), 201.

4 Adams, C. P., Walker, K. A., Obare, S. O., & Docherty, K. M. (2014). Size‐dependent antimicrobial effects of novel palladium nanoparticles. PLoS One, 9(1), e85981.

5 Albanese, A., Tang, P. S., & Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1–16.

6 Aminov, R. I. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiology, 1, 134.

7 Andrade, F., Rafael, D., Videira, M., Ferreira, D., Sosnik, A., & Sarmento, B. (2013). Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 65(13–14), 1816–1827.

8  Arthur, M., & Courvalin, P. (1993). Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrobial Agents and Chemotherapy, 37(8), 1563.

9 Astefanei, A., Núñez, O., & Galceran, M. T. (2015). Characterisation and determination of fullerenes: A critical review. Analytica Chimica Acta, 882, 1–21.

10 Azzazy, H. M., Mansour, M. M., & Kazmierczak, S. C. (2007). From diagnostics to therapy: Prospects of quantum dots. Clinical Biochemistry, 40(13–14), 917–927.

11 Baig, M. S., Ahad, A., Aslam, M., Imam, S. S., Aqil, M., & Ali, A. (2016). Application of Box–Behnken design for preparation of levofloxacin‐loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro; release, ocular tolerance, and antibacterial activity. International Journal of Biological Macromolecules, 85, 258–270.

12 Bansal, V., Li, V., O'Mullane, A. P., & Bhargava, S. K. (2010). Shape dependent electrocatalytic behaviour of silver nanoparticles. CrystEngComm, 12(12), 4280–4286.

13 Berry, V., Gole, A., Kundu, S., Murphy, C. J., & Saraf, R. F. (2005). Deposition of CTAB‐terminated nanorods on bacteria to form highly conducting hybrid systems. Journal of the American Chemical Society, 127(50), 17600–17601.

14 Bismuth, R., Zilhao, R., Sakamoto, H., Guesdon, J., & Courvalin, P. (1990). Gene heterogeneity for tetracycline resistance in Staphylococcus spp. Antimicrobial Agents and Chemotherapy, 34(8), 1611–1614.

15 Biswas, S., Deshpande, P. P., Navarro, G., Dodwadkar, N. S., & Torchilin, V. P. (2013). Lipid modified triblock PAMAM‐based nanocarriers for siRNA drug co‐delivery. Biomaterials, 34(4), 1289–1301.

16 Bleeker, E., Cassee, F., Geertsma, R., de Jong, W., Heugens, E., Koers‐Jacquemijns, M., … Rietveld, A. (2012). Interpretation and implications of the European Commission's definition on nanomaterials. RIVM Letter Report 601358001, 43.

17 Boverhof, D. R., Bramante, C. M., Butala, J. H., Clancy, S. F., Lafranconi, M., West, J., & Gordon, S. C. (2015). Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology, 73(1), 137–150.

18 Bunker, C. E., Novak, K. C., Guliants, E. A., Harruff, B. A., Meziani, M. J., Lin, Y., & Sun, Y.‐P. (2007). Formation of protein−metal oxide nanostructures by the sonochemical method: Observation of nanofibers and nanoneedles. Langmuir, 23(20), 10342–10347.

19 Çalışkan, N., Bayram, C., Erdal, E., Karahaliloğlu, Z., & Denkbaş, E. B. (2014). Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Materials Science and Engineering C, 35, 100–105.

20 Cavassin, E. D., de Figueiredo, L. F. P., Otoch, J. P., Seckler, M. M., de Oliveira, R. A., Franco, F. F., … Costa, S. F. (2015). Comparison of methods to detect the in vitro; activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of Nanobiotechnology, 13(1), 64.

21  Cha, S.‐H., Hong, J., McGuffie, M., Yeom, B., VanEpps, J. S., & Kotov, N. A. (2015). Shape‐dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano, 9(9), 9097–9105.

22 Chatterjee, T., Chakraborti, S., Joshi, P., Singh, S. P., Gupta, V., & Chakrabarti, P. (2010). The effect of zinc oxide nanoparticles on the structure of the periplasmic domain of the Vibrio cholerae ToxR protein. The FEBS Journal, 277(20), 4184–4194.

23 Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., & Park, W. H. (2019). Shape‐dependent antimicrobial activities of silver nanoparticles. International Journal of Nanomedicine, 14, 2773.

24 Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662–668.

25 Cox, G., & Wright, G. D. (2013). Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. International Journal of Medical Microbiology, 303(6–7), 287–292.

26 Cui, Y., Wei, Q., Park, H., & Lieber, C. M. (2001). Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 293(5533), 1289–1292.

27 Daeihamed, M., Dadashzadeh, S., Haeri, A., & Faghih Akhlaghi, M. (2017). Potential of liposomes for enhancement of oral drug absorption. Current Drug Delivery, 14(2), 289–303.

28 Daima, H. K., & Bansal, V. (2015). Influence of physicochemical properties of nanomaterials on their antibacterial applications. In M. Owais (Ed.), Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases (pp. 151–166). Elsevier.

29 Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1831–1831.

30 Della Valle, C., Visai, L., Santin, M., Cigada, A., Candiani, G., Pezzoli, D., … Chiesa, R. (2012). A novel antibacterial modification treatment of titanium capable to improve osseointegration. The International Journal of Artificial Organs, 35(10), 864–875.

31 Dorobantu, L. S., Fallone, C., Noble, A. J., Veinot, J., Ma, G., Goss, G. G., & Burrell, R. E. (2015). Toxicity of silver nanoparticles against bacteria, yeast, and algae. Journal of Nanoparticle Research, 17(4), 172.

32 Drake, D. R., Brogden, K. A., Dawson, D. V., & Wertz, P. W. (2008). Thematic review series: Skin lipids. Antimicrobial lipids at the skin surface. Journal of Lipid Research, 49(1), 4–11.

33 Ealias, A. M., & Saravanakumar, M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. Paper presented at the P Conf. Ser. Mater. Sci. Eng. 263 (2017) 032019, May 2–3 2017, VIT university, Vellore, Tamil Nadu, India.

34  El Badawy, A. M., Silva, R. G., Morris, B., Scheckel, K. G., Suidan, M. T., & Tolaymat, T. M. (2010). Surface charge‐dependent toxicity of silver nanoparticles. Environmental Science & Technology, 45(1), 283–287.

35 Elechiguerra, J. L., Burt, J. L., Morones, J. R., Camacho‐Bragado, A., Gao, X., Lara, H. H., & Yacaman, M. J. (2005). Interaction of silver nanoparticles with HIV‐1. Journal of Nanobiotechnology, 3(1), 6.

36 Fajardo, A., Martínez‐Martín, N., Mercadillo, M., Galán, J. C., Ghysels, B., Matthijs, S., … Baquero, F. (2008). The neglected intrinsic resistome of bacterial pathogens. PLoS One, 3(2), e1619.

37 Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against Gram‐positive and Gram‐negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 103–109.

38 Feng, Q. L., Wu, J., Chen, G., Cui, F., Kim, T., & Kim, J. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668.

39 Fernandez‐Lopez, S., Kim, H.‐S., Choi, E. C., Delgado, M., Granja, J. R., Khasanov, A., … Wilcoxen, K. M. (2001). Antibacterial agents based on the cyclic D, L‐α‐peptide architecture. Nature, 412(6845), 452.

40 Fishovitz, J., Hermoso, J. A., Chang, M., & Mobashery, S. (2014). Penicillin‐binding protein 2a of methicillin‐resistant Staphylococcus aureus. IUBMB Life, 66(8), 572–577.

41 Gao, M., Sun, L., Wang, Z., & Zhao, Y. (2013). Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Materials Science and Engineering C, 33(1), 397–404.

42 Gardini, D., Lüscher, C. J., Struve, C., & Krogfelt, K. A. (2018). Tailored nanomaterials for antimicrobial applications. In A. Barhoum & A. S. H. Makhlouf (Eds.), Fundamentals of Nanoparticles (pp. 71–104). Elsevier.

43 Gilbertson, L. M., Albalghiti, E. M., Fishman, Z. S., Perreault, F. O., Corredor, C., Posner, J. D., … Zimmerman, J. B. (2016). Shape‐dependent surface reactivity and antimicrobial activity of nano‐cupric oxide. Environmental Science & Technology, 50(7), 3975–3984.

44 Gleiter, H. (2000). Nanostructured materials: Basic concepts and microstructure. Acta Materialia, 48(1), 1–29.

45 Goenka, S., Sant, V., & Sant, S. (2014). Graphene‐based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 173, 75–88.

46 Gupta, A., Landis, R. F., & Rotello, V. M. (2016). Nanoparticle‐based antimicrobials: Surface functionality is critical. F1000Research, 5. doi:10.12688/f1000research.7595.1

47 Gupta, A., Mumtaz, S., Li, C.‐H., Hussain, I., & Rotello, V. M. (2019). Combatting antibiotic‐resistant bacteria using nanomaterials. Chemical Society Reviews, 48(2), 415–427.

48  Gurunathan, S., Han, J. W., Kwon, D.‐N., & Kim, J.‐H. (2014). Enhanced antibacterial and anti‐biofilm activities of silver nanoparticles against Gram‐negative and Gram‐positive bacteria. Nanoscale Research Letters, 9(1), 373.

49 Hadinoto, K., Sundaresan, A., & Cheow, W. S. (2013). Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 427–443.

50 Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., … Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511.

51 Hayden, S. C., Zhao, G., Saha, K., Phillips, R. L., Li, X., Miranda, O. R., … Bunz, U. H. (2012). Aggregation and interaction of cationic nanoparticles on bacterial surfaces. Journal of the American Chemical Society, 134(16), 6920–6923.

52 He, C., Hu, Y., Yin, L., Tang, C., & Yin, C. (2010). Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31(13), 3657–3666.

53 Hochella, M. F., Spencer, M. G., & Jones, K. L. (2015). Nanotechnology: Nature's gift or scientists' brainchild? Environmental Science: Nano, 2(2), 114–119.

54 Hong, X., Wen, J., Xiong, X., & Hu, Y. (2016). Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave‐assisted method. Environmental Science and Pollution Research, 23(5), 4489–4497.

55 Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145.

56 Jacoby, W. A., Maness, P. C., Wolfrum, E. J., Blake, D. M., & Fennell, J. A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science & Technology, 32(17), 2650–2653.

57 Jagadeeshan, S., & Parsanathan, R. (2019). Nano‐metal oxides for antibacterial activity. In M. Naushad, S. Rajendran, & F. Gracia (Eds.), Advanced Nanostructured Materials for Environmental Remediation (pp. 59–90). Springer.

58 Jaiswal, S., & Mishra, P. (2018). Antimicrobial and antibiofilm activity of curcumin‐silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Medical Microbiology and Immunology, 207(1), 39–53.

59 Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074.

60 Kang, S., Herzberg, M., Rodrigues, D. F., & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24(13), 6409–6413.

61 Kaufman, E. D., Belyea, J., Johnson, M. C., Nicholson, Z. M., Ricks, J. L., Shah, P. K., … Blomberg, E. (2007). Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and ζ‐potential measurements. Langmuir, 23(11), 6053–6062.

62  Kaur, P., & Peterson, E. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9, 2928.

63 Khameneh, B., Diab, R., Ghazvini, K., & Bazzaz, B. S. F. (2016). Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microbial Pathogenesis, 95, 32–42.

64 Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., Zia, Q., …Khan, A. M. (2016). Sol‐gel synthesis of thorn‐like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano‐antibiotics. Scientific Reports, 6, 27689.

65 Kim, J. S., Kuk, E., Yu, K. N., Kim, J.‐H., Park, S. J., Lee, H. J., … Hwang, C.‐Y. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101.

66 Knopp, D., Tang, D., & Niessner, R. (2009). Bioanalytical applications of biomolecule‐functionalized nanometer‐sized doped silica particles. Analytica Chimica Acta, 647(1), 14–30.

67 Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., & Dai, H. (2000). Nanotube molecular wires as chemical sensors. Science, 287(5453), 622–625.

68 Kühn, K. P., Chaberny, I. F., Massholder, K., Stickler, M., Benz, V. W., Sonntag, H.‐G., & Erdinger, L. (2003). Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere, 53(1), 71–77.

69 Le, A.‐T., Tam, P. D., Huy, P., Huy, T. Q., Van Hieu, N., Kudrinskiy, A., & Krutyakov, Y. A. (2010). Synthesis of oleic acid‐stabilized silver nanoparticles and analysis of their antibacterial activity. Materials Science and Engineering C, 30(6), 910–916.

70 Lee, A., Mao, W., Warren, M. S., Mistry, A., Hoshino, K., Okumura, R., … Lomovskaya, O. (2000). Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. Journal of Bacteriology, 182(11), 3142–3150.

71 Lee, W., Kang, S. H., Kim, J.‐Y., Kolekar, G. B., Sung, Y.‐E., & Han, S.‐H. (2009). TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum‐dot‐sensitized solar cells. Nanotechnology, 20(33), 335706.

72 Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371.

73 Li, C., Fu, R., Yu, C., Li, Z., Guan, H., Hu, D., … Lu, L. (2013). Silver nanoparticle/chitosan oligosaccharide/poly (vinyl alcohol) nanofibers as wound dressings: A preclinical study. International Journal of Nanomedicine, 8, 4131.

74 Li, H., Luo, Y.‐F., Williams, B. J., Blackwell, T. S., & Xie, C.‐M. (2012). Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies. International Journal of Medical Microbiology, 302(2), 63–68.

75  Li, M., Zhu, L., & Lin, D. (2011). Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environmental Science & Technology, 45(5), 1977–1983.

76 Lim, E.‐K., Chung, B. H., & Chung, S. J. (2018). Recent advances in pH‐sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Current Drug Targets, 19(4), 300–317.

77 Lin, C.‐C., Yeh, Y.‐C., Yang, C.‐Y., Chen, C.‐L., Chen, G.‐F., Chen, C.‐C., & Wu, Y.‐C. (2002). Selective binding of mannose‐encapsulated gold nanoparticles to type 1 pili in Escherichia coli. Journal of the American Chemical Society, 124(14), 3508–3509.

78 Liu, J., Chen, D., Peters, B. M., Li, L., Li, B., Xu, Z., & Shirliff, M. E. (2016). Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin‐resistant Staphylococcus aureus. Microbial Pathogenesis, 101, 56–67.

79 Liu, J.‐L., Zhang, W.‐J., Li, X.‐D., Yang, N., Pan, W.‐S., Kong, J., & Zhang, J.‐S. (2016). Sustained‐release genistein from nanostructured lipid carrier suppresses human lens epithelial cell growth. International Journal of Ophthalmology, 9(5), 643.

80 Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., … Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971–6980.

81 Liu, Y., Tee, J. K., & Chiu, G. N. C. (2015). Dendrimers in oral drug delivery application: Current explorations, toxicity issues and strategies for improvement. Current Pharmaceutical Design, 21(19), 2629–2642.

82 Luckarift, H. R., Balasubramanian, S., Paliwal, S., Johnson, G. R., & Simonian, A. L. (2007). Enzyme‐encapsulated silica monolayers for rapid functionalization of a gold surface. Colloids and Surfaces B: Biointerfaces, 58(1), 28–33.

83 Machado, S., Pacheco, J., Nouws, H., Albergaria, J. T., & Delerue‐Matos, C. (2015). Characterization of green zero‐valent iron nanoparticles produced with tree leaf extracts. Science of the Total Environment, 533, 76–81.

84 Markowska‐Szczupak, A., Ulfig, K., & Morawski, A. (2011). The application of titanium dioxide for deactivation of bioparticulates: An overview. Catalysis Today, 169(1), 249–257.

85 Martinez, J. (2018). Ecology and evolution of chromosomal gene transfer between environmental microorganisms and pathogens. Microbiology Spectrum, 6(1), 1–16.

86 Mazille, F., Moncayo‐Lasso, A., Spuhler, D., Serra, A., Peral, J., Benítez, N., & Pulgarin, C. (2010). Comparative evaluation of polymer surface functionalization techniques before iron oxide deposition. Activity of the iron oxide‐coated polymer films in the photo‐assisted degradation of organic pollutants and inactivation of bacteria. Chemical Engineering Journal, 160(1), 176–184.

87 Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in Enterococci. Expert Review of Anti‐infective Therapy, 12(10), 1221–1236.

88  Miola, M., Fucale, G., Maina, G., & Verné, E. (2015). Antibacterial and bioactive composite bone cements containing surface silver‐doped glass particles. Biomedical Materials, 10(5), 055014.

89 Mokerov, V., Fedorov, Y. V., Velikovski, L., & Scherbakova, M. Y. (2001). New quantum dot transistor. Nanotechnology, 12(4), 552.

90 Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346.

91 Mukherjee, A., Mohammed Sadiq, I., Prathna, T., & Chandrasekaran, N. (2011). Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances, 1, 245–251.

92 Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3), 788–800.

93 Narayanan, R., & El‐Sayed, M. A. (2004). Shape‐dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Letters, 4(7), 1343–1348.

94 Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., … Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 8(7), 543.

95 Neu, H. C. (1992). The crisis in antibiotic resistance. Science, 257(5073), 1064–1073.

96 Nikaido, H., & Takatsuka, Y. (2009). Mechanisms of RND multidrug efflux pumps. Biochimica et Biophysica Acta (BBA)‐Proteins and Proteomics, 1794(5), 769–781.

97 Ong, W. J., Tan, L. L., Chai, S. P., Yong, S. T., & Mohamed, A. R. (2014). Facet‐dependent photocatalytic properties of TiO2‐based composites for energy conversion and environmental remediation. ChemSusChem, 7(3), 690–719.

98 Oren, Z., Ramesh, J., Avrahami, D., Suryaprakash, N., Shai, Y., & Jelinek, R. (2002). Structures and mode of membrane interaction of a short α helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. European Journal of Biochemistry, 269(16), 3869–3880.

99 Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles – An antimicrobial study. Science and Technology of Advanced Materials, 9(3), 035004.

100 Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram‐negative bacterium Escherichia coli. Applied and Environmental Microbiolog, 73(6), 1712–1720.

101 Pan, X., Wang, Y., Chen, Z., Pan, D., Cheng, Y., Liu, Z., … Guan, X. (2013). Investigation of antibacterial activity and related mechanism of a series of nano‐Mg(OH)2. ACS Applied Materials & Interfaces, 5(3), 1137–1142.

102 Peulen, T.‐O., & Wilkinson, K. J. (2011). Diffusion of nanoparticles in a biofilm. Environmental Science & Technology, 45(8), 3367–3373.

103  Pokropivny, V., & Skorokhod, V. (2007). Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Materials Science and Engineering C, 27(5‐8), 990–993.

104 Prasannakumar, J., Vidya, Y., Anantharaju, K., Ramgopal, G., Nagabhushana, H., Sharma, S., … Rajanaik, H. (2015). Bio‐mediated route for the synthesis of shape tunable Y2O3: Tb3+ nanoparticles: Photoluminescence and antibacterial properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 151, 131–140.

105 Pumera, M. (2010). Graphene‐based nanomaterials and their electrochemistry. Chemical Society Reviews, 39(11), 4146–4157.

106 Qi, G., Li, L., Yu, F., & Wang, H. (2013). Vancomycin‐modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic Gram‐positive bacteria over macrophage‐like cells. ACS Applied Materials & Interfaces, 5(21), 10874–10881.

107 Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339(16), 2693–2700.

108 Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., & ul Hasan, M. M. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology, 60(1), 75–80.

109 Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size‐dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27(7), 4020–4028.

110 Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. Drug Resistance Updates, 13(6), 151–171.

111 Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., & Rahuman, A. A. (2012). Synthesis and antimicrobial activity of copper nanoparticles. Materials Letters, 71, 114–116.

112 Ranghar, S., Sirohi, P., Verma, P., & Agarwal, V. (2014). Nanoparticle‐based drug delivery systems: Promising approaches against infections. Brazilian Archives of Biology and Technology, 57(2), 209–222.

113 Raza, M., Kanwal, Z., Rauf, A., Sabri, A., Riaz, S., & Naseem, S. (2016). Size‐and shape‐dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 6(4), 74.

114 Rekha Deka, S., Kumar Sharma, A., & Kumar, P. (2015). Cationic polymers and their self‐assembly for antibacterial applications. Current Topics in Medicinal Chemistry, 15(13), 1179–1195.

115 Ren, G., Hu, D., Cheng, E. W., Vargas‐Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–590.

116 Roberts, M. C. (2005). Update on acquired tetracycline resistance genes. FEMS Microbiology Letters, 245(2), 195–203.

117  Ruparelia, J. P., Chatterjee, A. K., Duttagupta, S. P., & Mukherji, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 4(3), 707–716.

118 Saeed, K., & Khan, I. (2014). Preparation and properties of single‐walled carbon nanotubes/poly (butylene terephthalate) nanocomposites. Iranian Polymer Journal, 23(1), 53–58.

119 Saeed, K., & Khan, I. (2016). Preparation and characterization of single‐walled carbon nanotube/nylon 6, 6 nanocomposites. Instrumentation Science & Technology, 44(4), 435–444.

120 Salavati‐Niasari, M., Davar, F., & Mir, N. (2008). Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron, 27(17), 3514–3518.

121 Saliani, M., Jalal, R., & Goharshadi, E. K. (2015). Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur Journal of Microbiology, 8(2), e17115.

122 Saptarshi, S. R., Duschl, A., & Lopata, A. L. (2013). Interaction of nanoparticles with proteins: Relation to bio‐reactivity of the nanoparticle. Journal of Nanobiotechnology, 11(1), 26.

123 Satishkumar, R., & Vertegel, A. (2008). Charge‐directed targeting of antimicrobial protein‐nanoparticle conjugates. Biotechnology and Bioengineering, 100(3), 403–412.

124 Schwarz, S., Kehrenberg, C., Doublet, B., & Cloeckaert, A. (2004). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiology Reviews, 28(5), 519–542.

125 Sharma, N., Jandaik, S., Kumar, S., Chitkara, M., & Sandhu, I. S. (2016). Synthesis, characterisation and antimicrobial activity of manganese‐and iron‐doped zinc oxide nanoparticles. Journal of Experimental Nanoscience, 11(1), 54–71.

126 Sharma, R. K., Agarwal, M., & Balani, K. (2016). Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. Materials Science and Engineering C, 62, 843–851.

127 Sharma, V. K., Filip, J., Zboril, R., & Varma, R. S. (2015). Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chemical Society Reviews, 44(23), 8410–8423.

128 Shen, Q., Jiang, L., Zhang, H., Min, Q., Hou, W., & Zhu, J.‐J. (2008). Three‐dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. The Journal of Physical Chemistry C, 112(42), 16385–16392.

129 Singh, P., Garg, A., Pandit, S., Mokkapati, V., & Mijakovic, I. (2018). Antimicrobial effects of biogenic nanoparticles. Nanomaterials, 8(12), 1009.

130 Singh, P., Pandit, S., Garnæs, J., Tunjic, S., Mokkapati, V. R., Sultan, A., … Daugaard, A. E. (2018). Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. International Journal of Nanomedicine, 13, 3571.

131  Stouwdam, J. W., & Janssen, R. A. (2008). Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. Journal of Materials Chemistry, 18(16), 1889–1894.

132 Sudhasree, S., Shakila Banu, A., Brindha, P., & Kurian, G. A. (2014). Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicological & Environmental Chemistry, 96(5), 743–754.

133 Sukhorukova, I., Sheveyko, A., Kiryukhantsev‐Korneev, P. V., Zhitnyak, I., Gloushankova, N., Denisenko, E., … Shtansky, D. (2015). Toward bioactive yet antibacterial surfaces. Colloids and Surfaces B: Biointerfaces, 135, 158–165.

134 Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 453(2), 254–267.

135 Sun, S., & Zeng, H. (2002). Size‐controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society, 124(28), 8204–8205.

136 Sun, Y., & Xia, Y. (2002). Shape‐controlled synthesis of gold and silver nanoparticles. Science, 298(5601), 2176–2179.

137 Sundar, S., & Kumar Prajapati, V. (2012). Drug targeting to infectious diseases by nanoparticles surface functionalized with special biomolecules. Current Medicinal Chemistry, 19(19), 3196–3202.

138 Tai, C. Y., Tai, C.‐T., Chang, M.‐H., & Liu, H.‐S. (2007). Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Industrial & Engineering Chemistry Research, 46(17), 5536–5541.

139 Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, Clinical and Environmental Toxicology (pp. 133–164). Springer.

140 Tiwari, D. K., Behari, J., & Sen, P. (2008). Application of nanoparticles in waste water treatment. World Applied Science Journal, 3(3), 417–433.

141 Tong, T., Shereef, A., Wu, J., Binh, C. T. T., Kelly, J. J., Gaillard, J. F., & Gray, K. A. (2013). Effects of material morphology on the phototoxicity of nano‐TiO2 to bacteria. Environmental Science & Technology, 47(21), 12486–12495.

142 Van Dong, P., Ha, C. H., Binh, L. T., & Kasbohm, J. (2012). Chemical synthesis and antibacterial activity of novel‐shaped silver nanoparticles. International Nano Letters, 2, 9. doi:https://doi.org/10.1186/2228‐5326‐2‐9

143 Veerapandian, M., Lim, S. K., Nam, H. M., Kuppannan, G., & Yun, K. S. (2010). Glucosamine‐functionalized silver glyconanoparticles: Characterization and antibacterial activity. Analytical and Bioanalytical Chemistry, 398(2), 867–876.

144 Vollath, D. (2013). Nanoparticles‐Nanocomposites–Nanomaterials: An Introduction for Beginners. Wiley.

145 Wagner, S., Gondikas, A., Neubauer, E., Hofmann, T., & von der Kammer, F. (2014). Spot the difference: Engineered and natural nanoparticles in the environment – Release, behavior, and fate. Angewandte Chemie International Edition, 53(46), 12398–12419.

146  Wang, H., Castner, D. G., Ratner, B. D., & Jiang, S. (2004). Probing the orientation of surface‐immobilized immunoglobulin G by time‐of‐flight secondary ion mass spectrometry. Langmuir, 20(5), 1877–1887.

147 Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227.

148 Weaver, C. L., LaRosa, J. M., Luo, X., & Cui, X. T. (2014). Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano, 8(2), 1834–1843.

149 Wei, T., Chen, C., Liu, J., Liu, C., Posocco, P., Liu, X., … Fermeglia, M. (2015). Anticancer drug nanomicelles formed by self‐assembling amphiphilic dendrimer to combat cancer drug resistance. Proceedings of the National Academy of Sciences, 112(10), 2978–2983.

150 Wigginton, N. S., Titta, A. D., Piccapietra, F., Dobias, J., Nesatyy, V. J., Suter, M. J., & Bernier‐Latmani, R. (2010). Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environmental Science & Technology, 44(6), 2163–2168.

151 Wu, J., Shen, Y., Jiang, W., Jiang, W., & Shen, Y. (2016). Magnetic targeted drug delivery carriers encapsulated with pH‐sensitive polymer: Synthesis, characterization and in vitro; doxorubicin release studies. Journal of Biomaterials Science, Polymer Edition, 27(13), 1303–1316.

152 Xia, W., Grandfield, K., Hoess, A., Ballo, A., Cai, Y., & Engqvist, H. (2012). Mesoporous titanium dioxide coating for metallic implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100(1), 82–93.

153 Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., … Yan, H. (2003). One‐dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 15(5), 353–389.

154 Xiong, M. H., Li, Y. J., Bao, Y., Yang, X. Z., Hu, B., & Wang, J. (2012). Bacteria‐responsive multifunctional nanogel for targeted antibiotic delivery. Advanced Materials, 24(46), 6175–6180.

155 Yang, H., Chen, Z., Zhang, L., Yung, W. Y., Leung, K. C. F., Chan, H. Y. E., & Choi, C. H. J. (2016). Mechanism for the cellular uptake of targeted gold nanorods of defined aspect ratios. Small, 12(37), 5178–5189.

156 Yang, H.‐H., Zhang, S.‐Q., Chen, X.‐L., Zhuang, Z.‐X., Xu, J.‐G., & Wang, X.‐R. (2004). Magnetite‐containing spherical silica nanoparticles for biocatalysis and bioseparations. Analytical Chemistry, 76(5), 1316–1321.

157 Žalnėravičius, R., Paškevičius, A., Kurtinaitiene, M., & Jagminas, A. (2016). Size‐dependent antimicrobial properties of the cobalt ferrite nanoparticles. Journal of Nanoparticle Research, 18(10), 300.

158 Zhang, Y., Peng, H., Huang, W., Zhou, Y., & Yan, D. (2008). Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. Journal of Colloid and Interface Science, 325(2), 371–376.

Microbial Interactions at Nanobiotechnology Interfaces

Подняться наверх