Читать книгу Flow-Induced Vibration Handbook for Nuclear and Process Equipment - Группа авторов - Страница 4

List of Illustrations

Оглавление

1 Chapter 1Fig. 1-1 Tube‐to‐Tube Fretting Wear in the U‐Bend Region of an Early Nuclear...Fig. 1-2 Tube‐to‐Support Fretting Wear: Note Hole Through Tube Wall (Pettigr...Fig. 1-3 Fretting Wear in the Inlet Region of a Liquid Process Heat Exchange...Fig. 1-4 Fretting Wear Through Tube Wall at a Lacing Strip Location in a Pro...Fig. 1-5 Fretting Wear of Process Heat Exchanger: Repair (Pettigrew and Camp...Fig. 1-6 Fatigue Failure of a Titanium Tube in a Nuclear Power Plant Condens...Fig. 1-7 Tube‐to‐Tube Fretting Wear in a Power Plant Condenser.Fig. 1-8 Fretting Wear of a Gas Heat Exchanger Tube at a Baffle Edge Locatio...Fig. 1-9 Fretting‐Wear Damage on Nuclear Fuel (Hot Cell Examination) (Pettig...Fig. 1-10 Schematic Drawing of CANDU‐PHW® Reactor (Pettigrew, 1978 / wi...Fig. 1-11 a) Control Absorber Guide Tube Vibration due to Jetting, b) Modifi...Fig. 1-12 Multi‐Span Heat Exchanger Tube with N Spans and N‐1 Clearance Supp...

2 Chapter 2Fig. 2-1 Flow‐Path Approach.Fig. 2-2 Thermalhydraulic Analysis: Axial Grid Layout for a Typical Steam Ge...Fig. 2-3 Flow Velocity Vectors in the Central Plane of a Typical Steam Gener...Fig. 2-4 Gap Cross‐Flow Distribution Along a Typical Condenser Tube.Fig. 2-5 Flow Pattern Map for Two‐Phase Flow Across Cylinder Arrays Using Fl...Fig. 2-6 Hydrodynamic Mass in Two‐Phase Cross Flow: Comparison Between Theor...Fig. 2-7 Viscous Damping Data for a Cylinder in Unconfined and Confined Liqu...Fig. 2-8 Damping Data for Multi‐Span Heat Exchanger Tubes in Water.Fig. 2-9 Comparison Between Tube Support Damping Model (Squeeze‐Film and Fri...Fig. 2-10 Comparison Between Proposed Design Guideline and Available Damping...Fig. 2-11 Summary of Fluidelastic Instability Data for Single‐Phase Cross Fl...Fig. 2-12 Fluidelastic Instability Data in Two‐Phase Cross Flow.Fig. 2-13 Effect of P/D on Fluidelastic Instability Constant in Two‐Phase Cr...Fig. 2-14 Proposed Guideline for Single‐Phase Random Excitation Forces (Refe...Fig. 2-15 Proposed Guideline for Two‐Phase Random Excitation Forces In Churn...Fig. 2-16 Strouhal Numbers for Tube Bundles in Liquid Cross Flow: a) Normal ...Fig. 2-17 Fluctuating Force Coefficients for Tube Bundles in Single‐Phase Cr...Fig. 2-18 Fluctuating Force Coefficients for Tube Bundles in Two‐Phase Cross...Fig. 2-19 Proposed Damping Criteria (Resonance Parameter) for: a) In‐Line (S...Fig. 2-20 Flow Velocities, Support Locations and Tube Geometry for a Typical...Fig. 2-21 Example of Heat Exchanger Tube Vibration Analysis: Input of Vibrat...Fig. 2-22 Heat Exchanger Tube Vibration: Typical Free Vibration Analysis Res...Fig. 2-23 Vibration Mode Shapes and Vibration Analysis Results for a Typical...

3 Chapter 3Fig. 3-1 Pressurised Water Reactor Vessel and Internals (Axisa, 1993).Fig. 3-2 Light-Water Boiling Reactor Pressure Vessel and Internals (Shumway,...Fig. 3-3a CANDU Heavy Water Reactor (Enhanced CANDU 6 Technical Summary, 200...Fig. 3-3b Schematic Diagram of CANDU Nuclear Power Station (Enhanced CANDU 6...Fig. 3-4 Schematic Diagram of Recirculating Steam Generator (Sauvé et al, 19...Fig. 3-5 Example 3-1 - Process Heat Exchanger Schematic.Fig. 3-6 Example 3-2 - U-Bend Schematic.Fig. 3-7 An Example of Power Spectral Density Curves of Turbulent Pressures ...Fig. 3-8 Flow Patterns in Vertical Channels.Fig. 3-9 Flow Pattern Map for Vertical Flow in Tubes with 1 to 3 cm Diameter...Fig. 3-10 Boundary-Layer and Wake Changes in the Flow Past a Cylinder as the...Fig. 3-11 Two-Phase Flow Patterns in Vertically Upwards and Horizontal Cross...Fig. 3-12 Flow Pattern Map for Two-Phase Flow Across Cylinder Arrays Using F...Fig. 3-13 Flow Regime Map for Vertical Two-Phase Flow Using McQuillan and Wh...Fig. 3-14 Ulbrich and Mewes Flow Regime Map (Solid Line) for Vertically Upwa...Fig. 3-15 Flow Patterns in Vertical Two-Phase Cross Flow from Kanizawa and R...Fig. 3-16 Flow Regime Map Comparison Between Vertically Upward Air-Water Flo...Fig. 3-17 Sketch of Axial-Flow Heated-Cylinder Test Section (Pettigrew and G...Fig. 3-18 Effect of Nucleate Boiling on Cylinder Vibration (Pettigrew and Go...Fig. 3-19 Cross-Flow Tube Bundle Test Section with Heated Tubes (M and T) in...Fig. 3-20 Example 3-3 - Cross-Section of Heat Exchanger Showing Flow Paths 1...Fig. 3-21 Predicted Velocity Vectors (Left), Steam Quality (Second from the ...Fig. 3-22 Vector Fluid Velocity for a Maximum-Radius Tube Shown by Thick-Lin...Fig. 3-23 Gap Cross-Flow Velocity for the Maximum-Radius Tube.Fig. 3-24 Predicted (a) Velocity and (b) Air Concentration Distributions in ...Fig. 3-25 Process Heat Exchanger Predictions of Velocity Distribution for (a...Fig. 3-26 CFD Predictions of Path Lines in a Shell-and-Tube Heat Exchanger w...

4 Chapter 4Fig. 4-1 Effect of Void Fraction and Mass Flux on Hydrodynamic Mass Ratio (P...Fig. 4-2 Effect of P/D and Bundle Geometry on Hydrodynamic Mass Ratio (Petti...Fig. 4-3 Effect of Slip Ratio and Fluid Mixture on Hydrodynamic Mass Ratio C...Fig. 4-4 Straight Tube with Simple Support at Each End.Fig. 4-5 Two‐Span Beam with Outer Ends Clamped.Fig. 4-6 Multi‐Span Beam with Outer Ends Clamped.Fig. 4-7 View of Typical Steam Generator U‐Tube with Support Points Located ...Fig. 4-8 Nomenclature Utilized in Representing Lateral and Rotational Displa...Fig. 4-9 View of Half of Steam Generator U‐Tube, Referred to as a Half‐Tube,...Fig. 4-10 Schematic Representation of Boundary and Continuity Conditions to ...Fig. 4-11 Schematic Representation of Boundary and Continuity Conditions to ...Fig. 4-12 Schematic Representation of First and Second Free Vibration In‐Pla...Fig. 4-13 Schematic Representation of First and Second Free Vibration Out‐of...Fig. 4-14 Schematic Representation of Boundary and Continuity Conditions to ...Fig. 4-15 Schematic Representation of Boundary and Continuity Conditions to ...Fig. 4-16 Schematic Representation of Boundary and Continuity Conditions to ...Fig. 4-17 Schematic Representation of Boundary and Continuity Conditions to ...

5 Chapter 5Fig. 5-1 Types of Tube Motion at Support Location.Fig. 5-2 Types of Dynamic Interaction between Tube and Tube Support.Fig. 5-3 Damping of Heat Exchanger Tubes in Air.Fig. 5-4 Effect of Tube Support Thickness on Damping in Gases (Air).Fig. 5-5 Effect of Tube Support Thickness on Normalized Damping Ratio in Gas...Fig. 5-6 Effect of Support Thickness on a) Sliding Interaction, and b) Impac...Fig. 5-7 Effect of Dimensionless Support Thickness (L / m) on Normali...Fig. 5-8 Design Recommendation for Damping in Gases.Fig. 5-9 Damping Data for Multi‐Span Heat Exchanger Tubes in Water.Fig. 5-10 Viscous Damping Data for a Cylinder in Confined (Chen et al, 1976)...Fig. 5-11 Viscous Damping of Cylinders in Liquids Versus Stokes Number.Fig. 5-12 Damping Due to Tube Supports in Multi‐Span Heat Exchanger Tubes.Fig. 5-13 Heat Exchanger Tube with N Spans and (N‐1) Intermediate Supports....Fig. 5-14 Linearization of Three‐Dimensional Factor K.Fig. 5-15 Damping and Hydrodynamic Mass Functions, Im(h) and Re(h), (Mulcahy...Fig. 5-16 Squeeze‐Film Damping of a Multi‐Span Heat Exchanger Tube in Water....Fig. 5-17 Effect of Support Thickness Parameter L/m on Damping due to...Fig. 5-18 Comparison between Tube Support Damping Parameter and Experimental...Fig. 5-19 Type of Contact Between Tube and Support.Fig. 5-20 Comparison between Tube Support Damping Model (Squeeze‐Film and Fr...

6 Chapter 6Fig. 6-1 Flow Regime Map for Tube Bundles in Vertical Cross Flow: Symbols Sh...Fig. 6-2 Damping of a Cylinder in Confined Air‐Water Axial Flow; Mass Flux: ...Fig. 6-3 Effect of Mass Flux on Two‐Phase Damping Ratio in Annular Flow (Car...Fig. 6-4 Effect of Mass Flux on Tube Damping in Two‐Phase Cross Flow (Pettig...Fig. 6-5 Effect of Mass Flux on Damping in Lift and Drag Directions for a No...Fig. 6-6 Damping of Tube Bundles of P/D = 1.47 in Two‐Phase Cross Flow Showi...Fig. 6-7 Damping of Tube Bundles in Two‐Phase Cross Flow: Comparison of Air‐...Fig. 6-8 Damping of a Rotated‐Triangular Tube Bundle in Freon‐22 Two‐Phase C...Fig. 6-9 Effect of Void Fraction on Two‐Phase Damping in Cross Flow: Propose...Fig. 6-10 Damping of Tube Rows in Air-Water Cross Flows; ▴ Taylor et al (198...Fig. 6-11 Total Damping for Tube Bundles of P/D = 1.22 in Air‐Water Cross Fl...Fig. 6-12 Damping Behavior: Comparison Between All Flexible Tube Bundle and ...Fig. 6-13 Effect of Surface Tension on Two‐Phase Damping for Tube Frequencie...Fig. 6-14 Damping of Rotated Triangular Tube Bundles: Comparison Between Air...Fig. 6-15 Comparison Between Proposed Design Guideline and Available Damping...

7 Chapter 7Fig. 7-1 Typical Vibration Response versus Flow Velocity Relationship for Tu...Fig. 7-2 Vibration Response of a Normal‐Triangular Tube Bundle of P/D = 1.33...Fig. 7-3 Fluidelastic Instability Data and Design Recommendations for Variou...Fig. 7-4 Fluidelastic Instability Diagrams: a) Normal Square, b) Rotated Squ...Fig. 7-5 Principal Tube Bundle Configurations.Fig. 7-6 Well-Defined Fluidelastic ThresholdFig. 7-7 Less Well-Defined Fluidelastic ThresholdFig. 7-8 Vibration Response of One Flexible Tube versus Seven Flexible Tubes...Fig. 7-9 Outline of Fluidelastic Instability Data for All‐Flexible Tube Bund...Fig. 7-10 Fluidelastic Instability of a Single Flexible Tube in Rigid Arrays...Fig. 7-11 Fluidelastic Instability of a Single Flexible Tube in a Normal‐Squ...Fig. 7-12 Comparison of Fluidelastic Instability Results with Only Structura...Fig. 7-13 Fluidelastic Instability Data for Flexible Tube Bundles: Compariso...Fig. 7-14 Effect of Pitch‐to‐Diameter Ratio on Fluidelastic Instability Cons...Fig. 7-15 Fluidelastic Instability Data Presented in Terms of Modified Mass‐...Fig. 7-16 Fluidelastic Instability Data for Different Tube Bundle Configurat...Fig. 7-17 Summary of Fluidelastic Instability Data for All‐Flexible Tube Bun...Fig. 7-18 Fluidelastic Instability Analysis of Real Heat Exchangers: Compari...Fig. 7-19 Multi‐Span Heat Exchanger Tube Schematic with Cross‐Flow Pattern....Fig. 7-20 Wind‐Tunnel, Rotated‐Triangular Test Array.Fig. 7-21 Response Spectra Variation with Flow Velocity for Tube 2 in a Full...Fig. 7-22 Vibration Response for the Flexible Bundle within Wind Tunnel: ♦, ...Fig. 7-23 Response Frequency versus Flow Velocity for the Flexible Bundle wi...Fig. 7-24 Clamped‐Free Cylinder Experiencing 4th‐Mode Buckling In Confined L...Fig. 7-25 Selected Frequency Spectra for Fluidelastic Instability of Clamped...

8 Chapter 8Fig. 8-1 Typical Tube Response Spectra for Increasing Mass Fluxes at Constan...Fig. 8-2 Typical Vibration Response: Comparison Between Flexible Tube Bundle...Fig. 8-3 Vibration Response: Comparison Between Flexible Tube Bundle and One...Fig. 8-4 Schematic of Air‐Water Test Section and Tube Bundle.Fig. 8-5 Photograph of Air‐Water Test Section and Part of Air‐Water Loop.Fig. 8-6 Photograph of Cantilever Tube Bundle with Normal‐Triangular Configu...Fig. 8-7 Fluidelastic Instability Results in Air‐Water Cross Flow.Fig. 8-8 Flow Regime Maps for Air‐Water Cross Flow Showing Flow Conditions a...Fig. 8-9 Effect of P/D on Fluidelastic Instability Constant in Air‐Water Cro...Fig. 8-10 Two‐Phase Flow Structure in a Rotated‐Triangular Tube Bundle: a) S...Fig. 8-11 Two‐Phase Flow Paths in a Normal‐Triangular Tube Bundle.Fig. 8-12 Hydrodynamic Coupling Coherence as a Function of Mass Flux Ratio....Fig. 8-13 Air‐Water and Steam‐Water Fluidelastic Instability Results Plotted...Fig. 8-14 Air‐Water and Steam‐Water Fluidelastic Instability Results Plotted...Fig. 8-15 Photograph of Freon Pressure Vessel Test Section Showing Instrumen...Fig. 8-16 Schematic of Freon Test Section.Fig. 8-17 Photograph of Rotated‐Triangular Tube Bundle Instrumented with Str...Fig. 8-18 Typical Vibration Response Spectra for Two‐Phase Freon Cross Flow....Fig. 8-19 Typical Vibration Response Curves for Two‐Phase Freon Cross Flow: ...Fig. 8-20 Vibration Response: Freon versus Air‐Water.Fig. 8-21 Vibration Response In Freon at 80% Void Fraction: Flexible versus ...Fig. 8-22 Fluidelastic Instability Results in Two‐Phase Cross Flow: Comparis...Fig. 8-23a Flow Regime Map for Freon and Air‐Water Two‐Phase Cross Flow Show...Fig. 8-23b Flow Regime Map for Steam‐Water, Freon and Air‐Water Two‐Phase Cr...Fig. 8-24 Freon Results Included in Two‐Phase Fluidelastic Instability Resul...Fig. 8-25a Schematic of the Air‐Water U‐Bend Test Section and Flow Loop.Fig. 8-25b Schematic of Air‐Water U‐Bend Test Section.Fig. 8-26 Lowest Vibration Modes for an Unsupported U‐Tube.Fig. 8-27 Out‐of‐Plane U‐Tube Frequency‐Response Spectrum for 90% Void Fract...Fig. 8-28 Out‐of‐Plane Vibration Response Spectra as a Function of Mass Flux...Fig. 8-29 Out‐of‐Plane Vibration Amplitudes Measured by Strain Gages, in Liq...Fig. 8-30 In‐Plane Tangential Vibration Amplitude Measured by Strain Gages, ...Fig. 8-31 Flexible Tube Assemblies a) Single Tube, b) Central Cluster, c) Si...Fig. 8-32 Configurations of Flexible Tubes Tested Within the Test Section.Fig. 8-33 Response versus Flow‐Pitch Velocity for a Single Flexible Tube for...Fig. 8-34 Response Spectra of Single Flexible Tube in Flow at 80% Void Fract...Fig. 8-35 Response in Lift Direction versus Flow Pitch Velocity for the Sing...Fig. 8-36 Response in Lift Direction versus Flow Pitch Velocity for the Sing...Fig. 8-37 Response of Tube 7 versus Flow Pitch Velocity for the Partially Fl...Fig. 8-38 Instability Map: • Axisymetrically Flexible Tube Bundle in Air‐Wat...Fig. 8-39 Selected Frequency Spectra for Fluidelastic Instability of Clamped...

9 Chapter 9Fig. 9-1 Directional Dependence (Lift versus Drag).Fig. 9-2 Effect of Tube Bundle Orientation.Fig. 9-3 Effect of Pitch‐to‐Diameter Ratio (a) Normal‐Triangular Tube Bundle...Fig. 9-4 Effect of Upstream Turbulence.Fig. 9-5 Effect of Fluid Density (Gas versus Liquid).Fig. 9-6 Proposed Guideline for Excitation Forces.Fig. 9-7 Comparison with Previous Guidelines.

10 Chapter 10Fig. 10-1 First Normalized Guideline for Power Spectral Density of Random Tu...Fig. 10-2 Early Normalized Guideline for Power Spectral Density of Random Tu...Fig. 10-3 Normalized Guideline for Power Spectral Density of Random Turbulen...Fig. 10-4 Early Dimensionless Guideline for Power Spectral Density of Random...Fig. 10-5 CENS Air-Water Power Spectral Densities for a Normal-Square Tube B...Fig. 10-6 CENS Air-Water Power Spectral Densities at 50% Void Fraction for a...Fig. 10-7 CENS Air-Water Power Spectral Densities at a Mass Flux of 750 kg/(...Fig. 10-8 Measured Peak Frequencies from Air-Water Excitation Force Drag Pow...Fig. 10-9 Variation in Characteristic Void Length with Void Fraction and Mas...Fig. 10-10 CENS Characteristic Void Length Data (Square Symbols at 1500 kg/mFig. 10-11 CENS Air-Water Power Spectral Densities at a Mass Flux of 750 kg/...Fig. 10-12 CENS Air-Water Power Spectral Densities at fdB/UP = 0.1 for a Nor...Fig. 10-13 Air-Water Flow Regime Maps Using Kanizawa and Ribatski (2016) Bou...Fig. 10-14 Steam-Water and Freon Flow Regime Maps Using Kanizawa and Ribatsk...Fig. 10-15 CRL Air-Water Power Spectral Densities at fdB/ Up = 0.1 for a 60°...Fig. 10-16 Effect of Mass Flux on Reference Equivalent Power Spectral Densit...Fig. 10-17 Comparison of Normalized Random Excitation Power Spectral Densiti...Fig. 10-18 Comparison of Air-Water and Freon-22 Drag Power Spectral Densitie...Fig. 10-19 Comparison of Air-Water, Freon-134a and Freon-22 Drag Power Spect...Fig. 10-20 Comparison of Air-Water and Freon-22 Drag Power Spectral Densitie...Fig. 10-21 CENS Air-Water Dimensionless Power Spectral Densities at a Mass F...Fig. 10-22 Original Dimensionless Guideline with Data Points from de Langre ...Fig. 10-23 CENS Data Plotted Using de Langre and Villard (1998) Scaling Fact...Fig. 10-24 CRL and Other Data Plotted Using de Langre and Villard (1998) Sca...Fig. 10-25 Bubbly Flow Power Spectral Densities Collapsed Using Eq. (10-8) a...Fig. 10-26 Churn and Annular Flow Power Spectral Densities Collapsed Using E...Fig. 10-27 Intermittent Flow Power Spectral Densities Collapsed Using Eq. (1...Fig. 10-28 Axial Spatial Correlation of Random Pressure Fluctuations in Two-...Fig. 10-29 Measured and Predicted Vibration Amplitude versus Simulated Steam...Fig. 10-30 Effect of Flow Regime on Void Fraction Dependence of SF(f) in Ste...Fig. 10-31 Velocity Dependence of SF( f ) in Steam-Water Axial Flow (Pettigr...Fig. 10-32 Temperature Dependence of SF(f) in Steam-Water Axial Flow (Pettig...Fig. 10-33 Normalized Power Spectral Density Results from Several Researcher...

11 Chapter 11Fig. 11-1 Typical Vibration Response (Gorman, 1976).Fig. 11-2 Laminar Vortex Formation in the Wake of a Vibrating Cylinder at a ...Fig. 11-3 Envelope of Strouhal Number versus Reynolds Number for Circular Cy...Fig. 11-4 Lift Coefficients for a Single Cylinder (Gerlach and Dodge, 1970)....Fig. 11-5 Vortex Shedding Behind the Second Row in a Rotated‐Square Array wi...Fig. 11-6 Strouhal Numbers for Tube Bundles in Liquid Flow (Pettigrew and Go...Fig. 11-7 Strouhal Number Expressions for Various Tube Bundle Geometries (We...Fig. 11-8 Strouhal Numbers for Finned Tubes (Kouba, 1986): Dots are Experime...Fig. 11-9a Vibration Response to Single‐Phase Forced Excitation (a) Normal‐S...Fig. 11-9b Vibration Response to Single‐Phase Forced Excitation (b) Rotated‐...Fig. 11-9c Vibration Response to Single‐Phase Forced Excitation (c) Normal‐T...Fig. 11-10 Fluctuating Force Lift Coefficients for Tube Bundles in Single‐Ph...Fig. 11-11 Force Spectra at 80% Void Fraction: (a) and (b) Pitch Flow Veloci...Fig. 11-12 Periodic Force Frequency and Periodic Force versus Pitch Velocity...Fig. 11-13 Force Power Spectral Density (PSD) at 80% Void Fraction and 6.8 m...Fig. 11-14 Periodic Force Frequency and Periodic Force at 80% Void Fraction ...Fig. 11-15a Vibration Response to Air‐Water Forced Excitation (Solid Circle:...Fig. 11-15b Vibration Response to Air‐Water Forced Excitation (Solid Circle:...Fig. 11-15c Vibration Response to Air‐Water Forced Excitation (Solid Circle:...Fig. 11-16 Fluctuating Force Lift Coefficients for Tube Bundles in Two‐Phase...Fig. 11-17 Flow Regime Maps for the Two‐Phase Fluctuating Force Data Sources...Fig. 11-18a Schematic Diagram of the Acoustic Cavity in a Typical Moisture S...Fig. 11-18b Tube Bundle Geometry within the Moisture Separator Reheater.Fig. 11-19 Dimensionless Equivalent Speed of Sound Ce/C versus Dd/W of the A...Fig. 11-20 Acoustic Resonance in First and Second Mode Excited by Vortex She...Fig. 11-21 Acoustic Resonance in Second and Third Modes Excited by Vortex Sh...Fig. 11-22 Acoustic Resonance Criterion for a) In-Line (Square) Bundles and ...Fig. 11-23a Damping Criteria for In‐Line Arrays, Gi (Ziada et al, 1989b).Fig. 11-23b Damping Criteria for Staggered Arrays, GS (Ziada et al, 1989b)....Fig. 11-24 Maximum Sound Pressure Levels as a Function of Tube Pattern and S...

12 Chapter 12Fig. 12-1 Complex Tube‐Support Geometry: Possible Contact Points (Pettigrew ...Fig. 12-2 Steam Generator Tube and Support Contact Combinations (Pettigrew e...Fig. 12-3 Fuel Element Vibration Response Compared with Location in Fuel Str...Fig. 12-4 Effect of History on Fuel Element Vibration Response (Pettigrew, 1...Fig. 12-5 Nuclear Fuel Vibration: Range of Dynamic Characteristics (Pettigre...Fig. 12-6 Model of Fuel Element Bearing Pad and Fuel Channel Contact (Pettig...Fig. 12-7 Work‐Rate versus Gap/Preload for a Fuel Element Vibration Response...Fig. 12-8 Effect of Clearance or Preload on Dynamic Interaction between Fuel...Fig. 12-9 Work‐Rate Balance in Multi‐Span Heat Exchanger Tube Test.Fig. 12-10 Input and Dissipated Work‐Rates for Multi‐Span Heat Exchanger Tub...Fig. 12-11 Estimated and VIBIC‐Calculated Work‐Rates for: a) Two‐Span Simula...Fig. 12-12 Hypothetical Multi‐Span Heat Exchanger Tube.Fig. 12-13 Hypothetical Steam Generator U‐Bend Tube with Flat‐Bar Supports....Fig. 12-14a Contact between a Steam Generator Tube and Flat‐Bar‐Type (AVB) S...Fig. 12-14b Wear Volume versus Wear Depth.Fig. 12-15 Estimated and Measured Work‐Rate for Fuel Element Subjected to Tu...Fig. 12-16 Typical Vibration Limits for Piping System (Wachel, 1982).Fig. 12-17 Multi‐Span Steel Pipe.

13 Chapter 13Fig. 13-1 Types of Wear (Fisher et al, 1995).Fig. 13-2 Fretting Map (adapted from Vingsbo and Soderberg, 1987).Fig. 13-3 Effect of Temperature on Fretting‐Wear Rates (Ko, 1980).Fig. 13-4 Pressure Tube Fretting‐Wear Rates (Fisher et al, 1990).Fig. 13-5 Effect of Contact Force Level on Fretting‐Wear Rates (Ko, 1979a)....Fig. 13-6 Room‐Temperature Fretting‐Wear Machine.Fig. 13-7 Force Transducer Assembly for Room‐Temperature Machine (Ko, 1985a)...Fig. 13-8 Wear Rate versus Work‐Rate for Incoloy 800 Tubing and Inconel 600 ...Fig. 13-9 Schematic of an Impact Fretting‐Wear Test Machine (Pettigrew et al...Fig. 13-10 Two High‐Temperature Machines Used at AECL‐CNL (Guérout and Fishe...Fig. 13-11 Isometric 3-D Wear Profile (Specimen C297 PT‐124) (Fisher et al, ...Fig. 13-12 Bearing Pad and Pressure Tube Specimens Installed in the Wear Mac...Fig. 13-13 Schematic of the SAI Motion Type (Fisher et al, 1990).Fig. 13-14 Effect of Temperature on Pressure Tube Fretting Wear (Fisher et a...Fig. 13-15 Effect of Dissolved Oxygen Content on Pressure Tube Fretting Wear...Fig. 13-16 Wear Map for the X40 Alloy (Saito and Mino, 1995).Fig. 13-17 Effect of Temperature on Steam Generator Tube Fretting Wear (Fish...Fig. 13-18 Topographic SEM Photographs of Fret Marks (Fisher et al, 2002).Fig. 13-19 Incoloy 800 Tubing and Type 410 Stainless Steel Support Specimens...Fig. 13-20 Incoloy 800 Tubing and Type 410 Stainless Steel Fretting‐Wear Cur...Fig. 13-21 Displacement Plots ‐ Drilled‐Hole Test (Fisher et al, 1995).Fig. 13-22 Drilled‐Hole Test Results (Fisher et al, 1995).Fig. 13-23 Displacement Plots ‐ Broached‐Hole Test (Fisher et al, 1995).Fig. 13-24 Broached‐Hole Test Results (Fisher et al, 1995).Fig. 13-25 Inconel 600 Tubing and Carbon Steel Fretting‐Wear Curve (Fisher e...Fig. 13-26 SEM Photograph at 40x Magnification of the Worn Surface of the In...Fig. 13-27 Typical Tube‐to‐Support Relative Motion: a) Flat‐Bar Support and ...Fig. 13-28 Effect of Temperature on Fretting‐Wear Coefficients for Incoloy 8...Fig. 13-29 Effect of Temperature on Fretting‐Wear Coefficients for Incoloy 8...Fig. 13-30 Effect of Steam Generator Chemistry Control on Fretting Wear of I...Fig. 13-31 Tube‐to‐Drilled‐Hole‐Support Relative Motion (Guérout and Fisher,...Fig. 13-32 Effect of Boric Acid on Fretting Wear of Inconel 600 Tubing and T...Fig. 13-33 Effect of Support Geometry on Fretting Wear of Incoloy 800 Tubing...Fig. 13-34 Effect of Tube Material on Fretting Wear for Type 410 Stainless S...Fig. 13-35 Fretting‐Wear Results at High Temperature for Various Types of No...Fig. 13-36 Fretting‐Wear Results of Incoloy 800 Tubing versus Type 321 Stain...

14 Appendix AFig. 3-5 Example 3-1 ‐ Process Heat Exchanger Schematic.Fig. 11-10 Fluctuating Force Lift Coefficients for Tube Bundles in Single‐Ph...Fig. 3-6 Example 3-2 ‐ U‐Bend Schematic.Fig. 10-14 Steam‐Water and Freon Flow Regime Maps.Fig. 12-14a Contact Between a Steam Generator Tube and Flat‐Bar‐Type (AVB) S...Fig. A-1 Wear Volume versus Wear Depth.

Flow-Induced Vibration Handbook for Nuclear and Process Equipment

Подняться наверх