Biomolecular Engineering Solutions for Renewable Specialty Chemicals

Biomolecular Engineering Solutions for Renewable Specialty Chemicals
Автор книги: id книги: 2202191     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 22793,9 руб.     (251,44$) Читать книгу Купить и скачать книгу Электронная книга Жанр: Биология Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119771944 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Discover biomolecular engineering technologies for the production of biofuels, pharmaceuticals, organic and amino acids, vitamins, biopolymers, surfactants, detergents, and enzymes    In  Biomolecular Engineering Solutions for Renewable Specialty Chemicals , distinguished researchers and editors Drs. R. Navanietha Krishnaraj and Rajesh K. Sani deliver a collection of insightful resources on advanced technologies in the synthesis and purification of value-added compounds. Readers will discover new technologies that assist in the commercialization of the production of value-added products.  The editors also include resources that offer strategies for overcoming current limitations in biochemical synthesis, including purification. The articles within cover topics like the rewiring of anaerobic microbial processes for methane and hythane production, the extremophilic bioprocessing of wastes to biofuels, reverse methanogenesis of methane to biopolymers and value-added products, and more.  The book presents advanced concepts and biomolecular engineering technologies for the production of high-value, low-volume products, like therapeutic molecules, and describes methods for improving microbes and enzymes using protein engineering, metabolic engineering, and systems biology approaches for converting wastes.  Readers will also discover:  A thorough introduction to engineered microorganisms for the production of biocommodities and microbial production of vanillin from ferulic acid Explorations of antibiotic trends in microbial therapy, including current approaches and future prospects, as well as fermentation strategies in the food and beverage industry Practical discussions of bioactive oligosaccharides, including their production, characterization, and applications In-depth treatments of biopolymers, including a retrospective analysis in the facets of biomedical engineering Perfect for researchers and practicing professionals in the areas of environmental and industrial biotechnology, biomedicine, and the biological sciences,  Biomolecular Engineering Solutions for Renewable Specialty Chemicals  is also an invaluable resource for students taking courses involving biorefineries, biovalorization, industrial biotechnology, and environmental biotechnology.

Оглавление

Группа авторов. Biomolecular Engineering Solutions for Renewable Specialty Chemicals

Table of Contents

List of Tables

List of Illustrations

Guide

Pages

Biomolecular Engineering Solutions for Renewable Specialty Chemicals. Microorganisms, Products, and Processes

Preface. Biocommodity Engineering

List of Contributors

1 Engineered Microorganisms for Production of Biocommodities

1.1 Introduction

1.2 Fundamentals of Genetic Engineering

1.2.1 DNA‐altering Enzymes

1.2.1.1 DNA Polymerases

1.2.1.2 Nucleases

1.2.1.3 Ligases

1.2.1.3.1 Mechanism of Action

1.2.1.4 DNA‐modifying Enzymes. 1.2.1.4.1 Alkaline Phosphatase

1.2.1.4.2 T4 Poly Nucleotide Kinase

1.2.1.4.3 Terminal Transferase

1.2.1.4.4 Topoisomerases

1.2.2 Vectors

1.2.3 Incorporation of Modified DNA into Host

1.2.3.1 Introducing Recombinants into Prokaryotes

1.2.3.1.1 Transformation

1.2.3.1.2 Transduction

1.2.3.1.3 Conjugation

1.2.3.2 Introducing Recombinants into Eukaryotic Hosts

1.2.3.2.1 Transfection

1.2.3.2.2 Electroporation

1.2.3.2.3 Microinjection

1.2.3.2.4 Biolistics

1.2.4 Selection of Transformants

1.2.4.1 Direct Selection

1.2.4.1.1 Direct Antibiotic Resistance Screening

1.2.4.1.2 Blue–White Color Screening

1.2.4.2 Identification of the Clone from a Gene Library

1.2.4.2.1 Nucleic Acid Hybridization

1.2.4.2.2 Functional Screening

1.2.4.2.3 Chromosome Walking

1.3 Beneficial Biocommodities Produced Through Engineered Microbial Factories

1.3.1 Biopolymers

1.3.1.1 Cellulose

1.3.1.2 Poly‐ϒ‐glutamic Acid

1.3.1.3 Hyaluronic Acid

1.3.1.4 Polyhydroxyalkoate

1.3.2 Organic Acids

1.3.2.1 Citric Acid

1.3.2.2 Lactic Acid

1.3.2.3 Succinic Acid

1.3.2.4 Fumaric Acid

1.3.3 Therapeutic Proteins

1.4 Photosynthetic Production of Biofuels

1.4.1 Biohydrogen

1.4.2 Biodiesel

1.4.3 Bioethanol

1.4.4 Terpenoids

1.5 Conclusion

References

2 Microbial Cell Factories for the Biosynthesis of Vanillin and Its Applications

2.1 Introduction

2.2 Natural Sources of Vanilla and Its Production

2.3 Biotechnological Production of Vanillin

2.3.1 Enzymatic Synthesis of Vanillin

2.3.2 Microbial Biotransformation of Ferulic Acid to Vanillin

2.3.3 Agro‐wastes as a Source for Biovanillin Production

2.4 Strain Development for Improved Production of Vanillin. 2.4.1 Metabolic and Genetic Engineering

2.5 Bioactive Properties of Vanillin. 2.5.1 Antimicrobial Activity

2.5.2 Antioxidant Activity

2.5.3 Anticancer Activity. 2.5.3.1 Apoptosis Pathway

2.5.3.2 Tumor Necrosis Factor‐induced Apoptosis

2.5.3.3 Cell Cycle Arrest

2.5.3.4 Nuclear Factor κB (NF‐κB) Pathway

2.5.4 Anti‐sickling Activity

2.5.5 Hypolipidemic Activity

2.6 Conclusion

Acknowledgments

References

3 Antimicrobials : Targets, Functions, and Resistance

3.1 Introduction

3.2 Classification of Antibiotics

3.2.1 Classification of Antibiotics Based on Mode of Action: Bactericidal and Bacteriostatic

3.2.2 Classification of Antibiotics Based on the Spectrum of Action: Broad‐ and Narrow‐spectrum Antibiotics

3.3 Antibacterial Agents

3.3.1 Penicillins

3.3.1.1 Mechanism of Action

3.3.1.2 Clinical Implications. 3.3.1.2.1 Penicillin

3.3.1.2.2 Amoxicillin

3.3.2 Cephalosporins

3.3.2.1 Mechanism of Action

3.3.2.2 Clinical Indications. 3.3.2.2.1 Cephalexin (Keflex)

3.3.3 Macrolides

3.3.3.1 Mechanism of Action

3.3.3.2 Clinical Indications

3.3.3.2.1 Erythromycin (E‐Mycin)

3.3.3.2.2 Clarithromycin (Biaxin)

3.3.3.2.3 Azithromycin (Zithromax)

3.3.4 Fluoroquinolones

3.3.4.1 Mechanism of Action

3.3.4.2 Clinical Indication. 3.3.4.2.1 Ciprofloxacin

3.3.4.2.2 Levofloxacin

3.3.4.2.3 Ofloxacin

3.3.5 Sulfonamides

3.3.5.1 Mechanism of Action

3.3.5.2 Clinical Indication. 3.3.5.2.1 Sulfamethoxazole‐Trimethoprim

3.3.6 Tetracyclines

3.3.6.1 Mechanism of Action

3.3.6.2 Clinical Indication. 3.3.6.2.1 Tetracyclines

3.3.6.2.2 Doxycycline

3.3.7 Aminoglycosides

3.3.7.1 Mechanism of Action

3.3.7.2 Clinical Indication. 3.3.7.2.1 Gentamicin

3.3.7.2.2 Tobramycin

3.4 Antifungal Agents

3.4.1 Polyenes

3.4.1.1 Mechanism of Action

3.4.1.2 Clinical Indication

3.4.2 Azoles

3.4.2.1 Mechanism of Action

3.4.2.2 Clinical Indication. 3.4.2.2.1 Fluconazole

3.4.2.2.2 Itraconazole

3.4.2.2.3 Voriconazole

3.4.2.2.4 Posaconazole

3.4.2.2.5 Isavuconazole

3.4.3 Echinocandins

3.4.3.1 Mechanism of Action

3.4.3.2 Clinical Indication. 3.4.3.2.1 Caspofungin

3.4.3.2.2 Micafungin

3.4.3.2.3 Anidulafungin

3.4.4 Flucytosine

3.4.4.1 Mechanism of Action

3.4.4.2 Clinical Implication

3.5 Antiviral agents

3.6 Antiparasitic Agents

3.6.1 Antiprotozoan Agents

3.6.2 Antihelminthic Agents

3.6.3 Ectoparasiticides

3.7 Antimicrobial Resistance

3.7.1 Genetic Basis of AMR

3.7.2 Mechanistic Basis of Antimicrobial Resistance

3.8 Conclusion

Acknowledgment

References

4 Trends in Antimicrobial Therapy : Current Approaches and Future Prospects

4.1 Introduction

4.2 Antibiotics: A Brief History

4.2.1 Classification of Antibiotics

4.2.2 Evolution of Antibiotics

4.2.3 Mechanism of Action of Antibiotics

4.3 AMR: A Global Burden

4.3.1 Global Scenario

4.3.2 Origin of SUPERBUGS and the “END of Antibiotics”

4.4 Antimicrobial Resistance and Virulence

4.4.1 Molecular Insights and Mechanism of AMR

4.4.2 Antibiotic Resistance in Bacteria. 4.4.2.1 Horizontal Gene Transfer

4.4.2.2 Increased Mutation Rate

4.4.2.3 Antibiotic Inactivation

4.4.2.4 Alteration of the Antibiotic Targets

4.4.2.5 Changes in Cell Permeability and Efflux

4.4.2.6 The Major Facilitator Superfamily

4.4.2.7 The ATP‐Binding Cassette Superfamily

4.4.2.8 The Multidrug and Toxic Compound Extrusion Family

4.4.2.9 The Resistance–Nodulation–Division (RND) Superfamily

4.4.2.10 The Small Multidrug‐Resistance Family

4.4.3 Development of Antibiotic Resistance

4.4.4 Prioritization of Antibiotic Resistant Bacteria

4.4.5 Understanding Biofilm Resistance

4.5 Alternatives to Antibiotics. 4.5.1 Peptide Antibiotics

4.5.1.1 Cationic Antimicrobial Peptides (CAMPs)

4.5.1.2 Marine Antimicrobial Peptides

4.5.2 Nano Drugs

4.5.3 Probiotics

4.5.4 Bacteriocins

4.5.5 Bdellovibrio

4.5.6 Bdellovibrio as Live Antimicrobial Agent

4.6 Antibiotics: Global Action Plan on Antimicrobial Resistance

4.7 Conclusion

Acknowledgment

References

5 Fermentation Strategies in the Food and Beverage Industry

5.1 Introduction

5.2 Current Trends in Food Fermentation

5.2.1 Fermentation Types

5.2.1.1 Spontaneous Fermentation

5.2.1.2 Back‐Slopping Fermentation

5.2.1.3 Starter‐Culture Fermentation

5.2.2 Microbial Cultures

5.2.2.1 Starter Cultures

5.2.2.1.1 Yeasts

5.2.2.1.2 Lactic Acid Bacteria (LAB)

5.2.2.1.3 Other Starter Organisms

5.2.2.2 Adjunct Cultures

5.2.2.3 Bio‐protective Cultures

5.2.2.4 Probiotic Cultures

5.3 Future Directions

5.3.1 Use of Defined Mixed Cultures

5.3.2 Nanotechnology

5.3.2.1 Nanosensors

5.3.2.2 Nanoparticles

5.3.2.3 Nanocomposites

5.3.3 Meat Analogues

5.4 Conclusions

5.5 Questions for Thought

References

6 Bioactive Oligosaccharides : Production, Characterization, and Applications

6.1 Introduction

6.2 Sources, Types, Structure of Oligosaccharides

6.2.1 Plant Source

6.2.2 Animal Source

6.2.3 Insect Source

6.2.4 Marine Source

6.2.5 Microbial Source

6.2.6 Synthetic Oligosaccharides

6.2.7 Pseudo‐oligosaccharides

6.3 Production Methods of Oligosaccharides

6.3.1 Chemical Methods

6.3.2 Physical Methods

6.3.3 Enzymatic Hydrolysis

6.3.4 Microbial Production of Oligosaccharides

6.4 Extraction, Separation, and Purification of Oligosaccharides

6.5 Characterization of Oligosaccharides

6.6 Functional Properties of Oligosaccharides

6.7 Applications of Oligosaccharides

6.7.1 Functional Foods, Nutraceuticals, and Prebiotics

6.7.2 Pharmaceutical and Medical Applications. 6.7.2.1 Effects on Intestinal Microflora

6.7.2.2 Effects on Urogenital Infections

6.7.2.3 Type II Diabetes and Obesity

6.7.2.4 Immunomodulatory and Antitumor Activities

6.7.2.5 Effect on Cardiovascular Risk

6.7.2.6 Lowering of Cholesterol

6.7.2.7 Role in Osteoporosis

6.7.2.8 Antihypertensive Effects

6.7.2.9 Hepatic Protection

6.7.2.10 Antioxidant and Neuroprotective Agent

6.7.2.11 Antimicrobial Activity

6.7.2.12 Antibiotics

6.7.2.13 Oligosaccharides as Vaccine Components

6.7.3 Environmental Fortification

6.7.4 Cosmetics

6.7.5 Elicitors and Agriculture

6.7.6 Novel Biomaterials

6.8 Market Potential of Oligosaccharides

6.9 Future Prospects

References

7 Biopolymers : A Retrospective Analysis in the Facet of Biomedical Engineering

7.1 Introduction

7.2 Natures’ Advanced Materials: A Glance at Its Structure and Properties. 7.2.1 Polypeptides

7.2.1.1 Collagen

7.2.1.2 Elastin

7.2.1.3 Silk Fibroin

7.2.1.4 Gelatin

7.2.1.5 Albumin

7.2.1.6 Casein

7.2.2 Polysaccharides. 7.2.2.1 Cellulose

7.2.2.2 Starch

7.2.2.3 Cyclodextrin

7.2.2.4 Hyaluronic Acid

7.2.2.5 Chitosan

7.2.2.6 K‐carrageenan

7.2.2.7 Agarose

7.2.2.8 Alginate

7.2.3 Polynucleotides‐based Biopolymers

7.3 Smart Biopolymers

7.3.1 Chemical‐Responsive Biopolymers. 7.3.1.1 pH‐Sensitive Smart Biopolymers

7.3.1.2 Glucose‐Responsive Biopolymers

7.3.2 Physically Responsive Biopolymers. 7.3.2.1 Temperature‐Sensitive Smart Biopolymers

7.3.2.2 Light‐Responsive Smart Polymers

7.3.2.3 Electric‐Responsive Smart Polymers

7.3.2.4 Magnetic‐Responsive Smart Polymers

7.3.2.5 Redox‐Responsive Biopolymer

7.3.3 Biochemical Stimuli‐Responsive Biopolymers. 7.3.3.1 Enzyme‐Responsive Biopolymer

7.4 Fundamental Applications of Biopolymers in Biomedical Engineering. 7.4.1 Biopolymers in Cancer Theranostics

7.4.1.1 Drug Delivery

7.4.1.2 Cancer Diagnosis and Molecular Imaging

7.4.2 Biopolymeric‐based Biosensor

7.4.3 Wound Healing

7.4.4 Tissue Engineering and Regenerative Medicine

7.4.4.1 Biopolymers as Bioink for 3D Scaffolds

7.4.4.2 Corneal Regeneration

7.4.4.3 Neural Tissue Engineering

7.4.4.4 Bone Tissue Engineering

7.4.4.5 Cartilage Tissue Regeneration

7.4.5 Biopolymers for Biological Implants

7.4.6 Biopolymers in Other Applications

7.5 Processing Techniques for the Contrivance of Biopolymers. 7.5.1 3D Bioprinting

7.5.2 4D Bioprinting

7.5.3 Electrospinning

7.6 Conclusion

Acknowledgments

References

8 Metabolic Engineering Strategies to Enhance Microbial Production of Biopolymers

8.1 Introduction

8.2 Microbes as Cell Factories for the Production of Speciality Biochemicals

8.2.1 Bacteria as Cell Factories for the Production of Biopolymers

8.2.1.1 Polysaccharides

8.2.1.2 Polyesters

8.2.1.3 Polyamides

8.2.2 Fungus as Cell Factories for the Production of Biopolymers

8.2.2.1 Polysaccharides

8.2.2.2 Polyester

8.2.2.3 Polyamides

8.2.3 Microalgae as Cell Factories for the Production of Biopolymers

8.2.3.1 Polysaccharides from Microalgae

8.2.3.2 Polyester

8.2.3.3 Polyamides

8.3 Microbial Production Pathways for Various Types of Biopolymers. 8.3.1 Polysaccharide Production Pathways in Bacteria

8.3.2 Mechanism of Fungal Polysaccharides Synthesis

8.3.3 Mechanism of Synthesis of Polyester in Bacteria

8.3.4 Mechanism of Synthesis of Polyamide in Bacteria

8.4 Tools and Technologies Available for Metabolic Engineering

8.4.1 Metabolic Pathway Reconstruction

8.4.2 Metabolic Flux Analysis

8.4.3 Metabolic Control Analysis

8.4.4 Omics Analysis

8.5 Dynamic Metabolic Flux Analysis and its Role in Metabolic Engineering

8.6 Production of Biopolymers from Metabolically Engineered Microbes

8.6.1 Metabolic Modification of Pathway for Synthesis of Polysaccharides

8.6.2 Levan

8.6.3 Metabolic Modification of Pathway for Synthesis of Polyester

8.6.4 Metabolic Modification of Pathway for Synthesis of Polyamides

8.6.5 Culture of Metabolically Engineered Microbes in Fermentation or Bioreactor for Production of Biopolymer

8.7 Recovery and Purification of Biopolymers from Fermentation Broth

8.7.1 Separation and Purification of Xanthan

8.7.2 Separation of Poly‐L‐lysine

8.8 Conclusion and Future Challenges

Acknowledgments

References

Web References

9 Bioplastics Production : What Have We Achieved?

9.1 Introduction

9.2 Current Trends

9.3 Different Types of Bioplastics

9.3.1 Bio‐based Polyethylene (Bio‐PE)

9.3.2 Bio‐based PET

9.3.3 Polylactic Acid

9.3.4 Starch Blends

9.3.5 Polyhydroxyalkanoate

9.3.6 Polybutylene Succinate

9.3.7 Polybutylene Adipate Terephthalate

9.3.8 Polycaprolactone

9.3.9 Epoxies

9.3.10 Cellulose Acetate

9.4 Challenges Facing the Bioplastics Industry

9.5 Misconceptions and Negative Impacts

9.6 Take Home Message and Future Directions

9.7 Questions for Thought

Acknowledgments

Conflict of Interest

References

10 Conversion of Lignocellulosic Biomass to Ethanol: Recent Advances

10.1 Introduction

10.2 LCB: Structure, Composition, and Recalcitrance

10.3 LCB to Ethanol: Bioprocess Strategies

10.4 Pretreatment of LCB

10.4.1 Physical Pretreatment

10.4.2 Physicochemical Pretreatment

10.4.2.1 Steam Explosion

10.4.2.2 Liquid Hot Water

10.4.2.3 Ammonia Fiber Explosion

10.4.3 Chemical Pretreatment

10.4.3.1 Dilute Acid Pretreatment (DAP)

10.4.3.2 Alkali Pretreatment

10.4.3.3 Organosolv

10.4.3.4 Ionic Liquid (IL) and Deep Eutectic Solvent (DES)

10.4.3.5 Supercritical Fluid Pretreatment

10.4.4 Biological Pretreatment. 10.4.4.1 Bacterial Pretreatment

10.4.4.2 Fungal Pretreatment

10.4.4.3 Enzymatic Pretreatment

10.4.5 Optimization of Pretreatment Process

10.5 Enzymatic Hydrolysis

10.5.1 Cellulose Hydrolysis

10.5.2 Xylan Hydrolysis

10.5.3 Accessory Enzymes

10.5.4 Auxiliary Activity and Non‐Hydrolytic Enzymes

10.5.5 Enzyme Cocktail for Biomass Hydrolysis

10.5.5.1 Cocktail Development

10.6 High Solids Loading Enzymatic Hydrolysis (HSLEH)

10.6.1 Enzyme Inhibitors and Detoxification

10.6.2 Cellulase Feedback Inhibition

10.6.3 Rheology

10.6.4 Reactors and Impellers

10.7 Fermentation

10.8 Genetic Engineering in LCB Bioconversion

10.9 Conclusions

Acknowledgments

References

11 Advancement in Biogas Technology for Sustainable Energy Production

11.1 Introduction

11.2 Biogas Developments Worldwide

11.3 Biogas Development in India

11.4 Recent Issues in Biogas Production

11.5 Current Trends in Biogas Production

11.6 Advanced Anaerobic Digestion Methodologies

11.6.1 Anaerobic Membrane Reactor (AnMBRs)

11.6.2 Dry Anaerobic Digestion Technology (DADT)

11.6.3 Anaerobic Co‐digestion Technology (AcoD)

11.7 Role of Biotechnology in Enhancing Biogas Production

11.8 Application of Nanotechnology in Biogas and Methane Production

11.9 Biogas Upgrading Technologies

11.10 Conclusion

References

12 Biofertilizers : A Sustainable Approach Towards Enhancing the Agricultural Productivity

12.1 Introduction

12.2 Types of Biofertilizers

12.2.1 Nitrogen‐Fixing Biofertilizer

12.2.1.1 Free‐Living Nitrogen‐Fixing Microorganisms

12.2.1.2 Photosynthetic Nitrogen‐Fixing Microorganisms

12.2.2 Phosphorus Biofertilizer

12.2.2.1 Phosphate‐solubilizing Bacteria (PSB)

12.2.2.2 Phosphate‐mobilizing Microorganisms

12.2.3 Plant‐Growth‐promoting Biofertilizers

12.3 Effect on Bioremediation of Environmental Pollutants

12.4 Bioformulations and Its Types

12.5 Preparation of Biofertilizers

12.6 Various Modes of Biofertilizer Application

12.7 Challenges to Commercialization of Biofertilizers

12.8 Future Perspective

References

13 Biofertilizers from Food and Agricultural By‐Products and Wastes

13.1 Introduction

13.2 Biofertilizer

13.2.1 N2‐fixing Biofertilizer

13.2.1.1 Free‐living N2‐fixing Biofertilizer

13.2.1.1.1 Azotobacteria

13.2.1.1.2 Cyanobacteria

13.2.1.2 Symbiotic N2‐Fixing Biofertilizer. 13.2.1.2.1 Rhizobium Biofertilizers

13.2.1.2.2 Azolla Biofertilizers

13.2.1.2.3 Azospirillum Biofertilizers

13.2.2 Phosphate‐solubilizing Biofertilizers

13.2.3 Phosphate‐mobilizing Biofertilizer

13.2.4 Plant‐Growth‐ promoting Biofertilizers

13.3 Agricultural Waste

13.3.1 Agro‐industrial Wastes

13.4 Food Waste

13.5 Biofertilizer Production Using Fermentation Technology

13.5.1 Solid‐State Fermentation (SSF)

13.5.2 Submerged Fermentation (SmF)

13.5.3 Production of N2‐fixing Biofertilizer

13.5.3.1 Production of Rhizobium Biofertilizer

13.5.3.2 Production of Azotobacter Biofertilizer

13.5.3.3 Production of Azospirillum Biofertilizer

13.5.4 Production of Phosphate‐solubilizing Biofertilizer

13.5.5 Production of Phosphate‐mobilizing Biofertilizer

13.6 Biofertilizer for Organic Farming

13.7 Conclusion

Conflict of Interest

References

Index. a

b

c

d

e

f

g

h

i

k

l

m

n

o

p

q

r

s

t

v

w

x

y

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Edited by

.....

B. Vanavil Department of Biotechnology School of Bio and Chemical Engineering Kalasalingam Academy of Research and Education Krishnankoil, TN India

Perumal Varalakshmi Department of Molecular Microbiology School of Biotechnology Madurai Kamaraj University Madurai, TN India

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Biomolecular Engineering Solutions for Renewable Specialty Chemicals
Подняться наверх