Читать книгу Algebra and Applications 2 - Группа авторов - Страница 2

Оглавление

Table of Contents

Cover

Title Page

Copyright

Preface

1 Algebraic Background for Numerical Methods, Control Theory and Renormalization 1.1. Introduction 1.2. Hopf algebras: general properties 1.3. Connected Hopf algebras 1.4. Pre-Lie algebras 1.5. Algebraic operads 1.6. Pre-Lie algebras (continued) 1.7. Other related algebraic structures 1.8. References

2 From Iterated Integrals and Chronological Calculus to Hopf and Rota–Baxter Algebras 2.1. Introduction 2.2. Generalized iterated integrals 2.3. Advances in chronological calculus 2.4. Rota–Baxter algebras 2.5. References

3 Noncommutative Symmetric Functions, Lie Series and Descent Algebras 3.1. Introduction 3.2. Classical symmetric functions 3.3. Noncommutative symmetric functions 3.4. Lie series and Lie idempotents 3.5. Lie idempotents as noncommutative symmetric functions 3.6. Decompositions of the descent algebras 3.7. Decompositions of the tensor algebra 3.8. General deformations 3.9. Lie quasi-idempotents as Lie polynomials 3.10. Permutations and free quasi-symmetric functions 3.11. Packed words and word quasi-symmetric functions 3.12. References

4 From Runge–Kutta Methods to Hopf Algebras of Rooted Trees 4.1. Numerical integration methods for ordinary differential equations 4.2. Algebraic theory of Runge–Kutta methods 4.3. B-series and related formal expansions 4.4. Hopf algebras of rooted trees 4.5. References

5 Combinatorial Algebra in Controllability and Optimal Control 5.1. Introduction 5.2. Analytic foundations 5.3. Controllability and optimality 5.4. Product expansions and realizations 5.5. References

10  6 Algebra is Geometry is Algebra – Interactions Between Hopf Algebras, Infinite Dimensional Geometry and Application 6.1. The Butcher group and the Connes–Kreimer algebra 6.2. Character groups of graded and connected Hopf algebras 6.3. Controlled groups of characters 6.4. Appendix: Calculus in locally convex spaces 6.5. References

11  List of Authors

12  Index

List of Illustrations

1 Chapter 5Figure 5.1. Parallel parking a car (bicycle). For a color version of this figure...Figure 5.2. The states of the bicycleFigure 5.3. An inverted pendulumFigure 5.4. Open-loop and closed-loop controls with a feedback controller KFigure 5.5. Parallel parking a car (bicycle). For a color version of this figure...Figure 5.6. Pontryagin maximum principle. For a color version of this figure, se...Figure 5.7. Needle variations also scaled by amplitudeFigure 5.8. More complex family of control variations

Tables

1 Chapter 4Table 4.1. Functions associated with rooted trees with up to four verticesTable 4.2. Elementary differentials Fu and the values of u! and σ(u) for rooted ...

2 Chapter 6Table 6.1. Standard examples for growth families (Dahmen and Schmeding 2018, Pro...

Guide

Cover

Table of Contents

Title page

Copyright

Preface

Begin Reading

List of Authors

Index

End User License Agreement

Pages

v

xi

xii

1

2

3

4

5

6

10  7

11  8

12 9

13 10

14  11

15  12

16  13

17  14

18  15

19  16

20  17

21  18

22  19

23  20

24  21

25  22

26  23

27  24

28  25

29  26

30  27

31  28

32  29

33  30

34  31

35  32

36  33

37  34

38  35

39  36

40  37

41  38

42  39

43  40

44  41

45  42

46  43

47  44

48  45

49  46

50  47

51  48

52  49

53  50

54  51

55  52

56  53

57  55

58  56

59  57

60  58

61  59

62  60

63  61

64  62

65  63

66  64

67  65

68 66

69  67

70  68

71  69

72 70

73  71

74  72

75  73

76  74

77  75

78  76

79  77

80  78

81  79

82  80

83  81

84  82

85 83

86  84

87  85

88  86

89  87

90  88

91  89

92  90

93  91

94  92

95  93

96 94

97  95

98  96

99  97

100 98

101  99

102  100

103  101

104  102

105  103

106  104

107  105

108  106

109  107

110  108

111  109

112  110

113  111

114  112

115  113

116  114

117  115

118  116

119  117

120  118

121  119

122  120

123  121

124  122

125  123

126  124

127  125

128  126

129  127

130  128

131  129

132  130

133  131

134  132

135  133

136  134

137  135

138  136

139  137

140  138

141  139

142  140

143  141

144  142

145  143

146  144

147  145

148  146

149  147

150  148

151  149

152  150

153  151

154  152

155  153

156  154

157  155

158  156

159  157

160  158

161  159

162  160

163  161

164  162

165  163

166  164

167  165

168  166

169  167

170  168

171  169

172  170

173  171

174  172

175  173

176  174

177  175

178  176

179  177

180  178

181  179

182  180

183  181

184  182

185  183

186  184

187  185

188  186

189  187

190  188

191  189

192  190

193  191

194  192

195  193

196  194

197  195

198  196

199  197

200  198

201  199

202  200

203  201

204  202

205  203

206  204

207  205

208  206

209  207

210  208

211  209

212  210

213  211

214  212

215  213

216  214

217  215

218  216

219  217

220  218

221  219

222  221

223  222

224  223

225  224

226  225

227  226

228 227

229  228

230  229

231  230

232  231

233  232

234  233

235  234

236  235

237  236

238  237

239  238

240  239

241  240

242  241

243  242

244  243

245  244

246  245

247  246

248  247

249  248

250  249

251 250

252 251

253  252

254  253

255  254

256  255

257  256

258  257

259  258

260  259

261  260

262 261

263  262

264  263

265  264

266  265

267  266

268  267

269  268

270  269

271  270

272 271

273  272

274  273

275  274

276  275

277  276

278  277

279  278

280  279

281  280

282  281

283  282

284  283

285  284

286  285

287  287

288  288

289  289

290  290

291  291

292  292

293  293

294  294

295  295

296  296

297 297

298  298

299 299

300  300

301 301

302  302

303  303

304  304

305  305

306 306

307  307

308  308

309  309

310  311

311  313

312 314

313  315

Algebra and Applications 2

Подняться наверх