Читать книгу Algebra and Applications 2 - Группа авторов - Страница 2
ОглавлениеTable of Contents
1 Cover
4 Preface
5 1 Algebraic Background for Numerical Methods, Control Theory and Renormalization 1.1. Introduction 1.2. Hopf algebras: general properties 1.3. Connected Hopf algebras 1.4. Pre-Lie algebras 1.5. Algebraic operads 1.6. Pre-Lie algebras (continued) 1.7. Other related algebraic structures 1.8. References
6 2 From Iterated Integrals and Chronological Calculus to Hopf and Rota–Baxter Algebras 2.1. Introduction 2.2. Generalized iterated integrals 2.3. Advances in chronological calculus 2.4. Rota–Baxter algebras 2.5. References
7 3 Noncommutative Symmetric Functions, Lie Series and Descent Algebras 3.1. Introduction 3.2. Classical symmetric functions 3.3. Noncommutative symmetric functions 3.4. Lie series and Lie idempotents 3.5. Lie idempotents as noncommutative symmetric functions 3.6. Decompositions of the descent algebras 3.7. Decompositions of the tensor algebra 3.8. General deformations 3.9. Lie quasi-idempotents as Lie polynomials 3.10. Permutations and free quasi-symmetric functions 3.11. Packed words and word quasi-symmetric functions 3.12. References
8 4 From Runge–Kutta Methods to Hopf Algebras of Rooted Trees 4.1. Numerical integration methods for ordinary differential equations 4.2. Algebraic theory of Runge–Kutta methods 4.3. B-series and related formal expansions 4.4. Hopf algebras of rooted trees 4.5. References
9 5 Combinatorial Algebra in Controllability and Optimal Control 5.1. Introduction 5.2. Analytic foundations 5.3. Controllability and optimality 5.4. Product expansions and realizations 5.5. References
10 6 Algebra is Geometry is Algebra – Interactions Between Hopf Algebras, Infinite Dimensional Geometry and Application 6.1. The Butcher group and the Connes–Kreimer algebra 6.2. Character groups of graded and connected Hopf algebras 6.3. Controlled groups of characters 6.4. Appendix: Calculus in locally convex spaces 6.5. References
12 Index
List of Illustrations
1 Chapter 5Figure 5.1. Parallel parking a car (bicycle). For a color version of this figure...Figure 5.2. The states of the bicycleFigure 5.3. An inverted pendulumFigure 5.4. Open-loop and closed-loop controls with a feedback controller KFigure 5.5. Parallel parking a car (bicycle). For a color version of this figure...Figure 5.6. Pontryagin maximum principle. For a color version of this figure, se...Figure 5.7. Needle variations also scaled by amplitudeFigure 5.8. More complex family of control variations
Tables
1 Chapter 4Table 4.1. Functions associated with rooted trees with up to four verticesTable 4.2. Elementary differentials Fu and the values of u! and σ(u) for rooted ...
2 Chapter 6Table 6.1. Standard examples for growth families (Dahmen and Schmeding 2018, Pro...
Pages
1 v
2 xi
3 xii
4 1
5 2
6 3
7 4
8 5
9 6
10 7
11 8
12 9
13 10
14 11
15 12
16 13
17 14
18 15
19 16
20 17
21 18
22 19
23 20
24 21
25 22
26 23
27 24
28 25
29 26
30 27
31 28
32 29
33 30
34 31
35 32
36 33
37 34
38 35
39 36
40 37
41 38
42 39
43 40
44 41
45 42
46 43
47 44
48 45
49 46
50 47
51 48
52 49
53 50
54 51
55 52
56 53
57 55
58 56
59 57
60 58
61 59
62 60
63 61
64 62
65 63
66 64
67 65
68 66
69 67
70 68
71 69
72 70
73 71
74 72
75 73
76 74
77 75
78 76
79 77
80 78
81 79
82 80
83 81
84 82
85 83
86 84
87 85
88 86
89 87
90 88
91 89
92 90
93 91
94 92
95 93
96 94
97 95
98 96
99 97
100 98
101 99
102 100
103 101
104 102
105 103
106 104
107 105
108 106
109 107
110 108
111 109
112 110
113 111
114 112
115 113
116 114
117 115
118 116
119 117
120 118
121 119
122 120
123 121
124 122
125 123
126 124
127 125
128 126
129 127
130 128
131 129
132 130
133 131
134 132
135 133
136 134
137 135
138 136
139 137
140 138
141 139
142 140
143 141
144 142
145 143
146 144
147 145
148 146
149 147
150 148
151 149
152 150
153 151
154 152
155 153
156 154
157 155
158 156
159 157
160 158
161 159
162 160
163 161
164 162
165 163
166 164
167 165
168 166
169 167
170 168
171 169
172 170
173 171
174 172
175 173
176 174
177 175
178 176
179 177
180 178
181 179
182 180
183 181
184 182
185 183
186 184
187 185
188 186
189 187
190 188
191 189
192 190
193 191
194 192
195 193
196 194
197 195
198 196
199 197
200 198
201 199
202 200
203 201
204 202
205 203
206 204
207 205
208 206
209 207
210 208
211 209
212 210
213 211
214 212
215 213
216 214
217 215
218 216
219 217
220 218
221 219
222 221
223 222
224 223
225 224
226 225
227 226
228 227
229 228
230 229
231 230
232 231
233 232
234 233
235 234
236 235
237 236
238 237
239 238
240 239
241 240
242 241
243 242
244 243
245 244
246 245
247 246
248 247
249 248
250 249
251 250
252 251
253 252
254 253
255 254
256 255
257 256
258 257
259 258
260 259
261 260
262 261
263 262
264 263
265 264
266 265
267 266
268 267
269 268
270 269
271 270
272 271
273 272
274 273
275 274
276 275
277 276
278 277
279 278
280 279
281 280
282 281
283 282
284 283
285 284
286 285
287 287
288 288
289 289
290 290
291 291
292 292
293 293
294 294
295 295
296 296
297 297
298 298
299 299
300 300
301 301
302 302
303 303
304 304
305 305
306 306
307 307
308 308
309 309
310 311
311 313
312 314
313 315