Читать книгу Reservoir Characterization - Группа авторов - Страница 52

References

Оглавление

1. R. Agrawal, and P. Raghavan, A Linear Method for Deviation Detection in Large Databases Arning A. KDD-96, 164–169 (1996).

2. V. Barnett, The study of outliers: Purpose distance and model. Applied Statistics 27(3), 242–250 (1978).

3. V. Barnett, and T. Lewis, Outliers in Statistical Data, p. 582, John Wiley, New York, NY, (1994).

4. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, LOF: Identifying density-based local outliers, Proc. ACM SIGMOD Int. Conf. Dallas, 12 (2000).

5. G. Chilingar, S. Mazzulo, and H. Rieke, Carbonate Reservoir Characterization: A Geologic-engineering Analysis, p. 639, part 1. Elsevier (1992).

6. J. Dvorkin, G. Mavko, and A. Nur, Overpressure detection from compressional and shear-wave data. Geophysical Research Letters 26(22), 3417–3420 (1999).

7. A. Gurevich, G. Chilingar, and F. Aminzadeh, Origin of the formation fluid pressuire distribution and ways to improving pressure prediction methods. J. Pet. Sci. Eng. 12, 67–77 (1994).

8. S. Katz, G. Chilingar, F. Aminzadeh, and L. Khilyuk, Dissimilarity analysis of petro-physical parameters as gas-sand predictors. Journal of Sustainable Energy Engineering 2, 101–115 (2014).

9. A. Ramos, and J. Castagna, Useful approximations for converted-wave AVO. Geophysics 66(6), 1721–1734 (2001).

10. F. Aminzadeh, and S. Chatterjee, Applications of cluster analysis in exploration seismology. Geoexploration 23, 147–159 (1984).

11. F. Aminzadeh, Meta attributes: A new concept for reservoir characterization and seismic anomaly detection, GCAGS 53th Annual Convention (2003).

12. D. Maity, and F. Aminzadeh, Novel fracture zone identifier attribute using geophysical and well log data for unconventional reservoirs. Interpretation Journal 3(3), 155–167 (2015).

13. F. Aminzadeh, J. Barhen, C. W. Glover, and N. B. Toomanian, Reservoir parameter estimation using a hybrid neural network. Computers and Geosciences 26, 869–875 (2000).

14. F. Aminzadeh, Applications of AI and soft computing for challenging problems in the oil industry. J. Petroleum Science and Engineering 47, 5–14 (2005).

15. F. Aminzadeh, A new concept for seismic anomaly detection, Offshore Technology Conf., SPE (2005).

16. M. T. Taner, F. Koehler, and R. E. Sheriff, Complex seismic trace analysis. Geophysics 44, 1041–1063 (1979).

17. S. Chopra, and K. J. Marfurt, Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical Developments 11, 464 (2007).

18. D. Tax, and R. Duin, Uniform object generation for optimizing one-class classifiers. J. Machine Learning Research 2, 155–173 (2001).

19. J. Muñoz-Mari, F. Bovolo, L. Gomez-Chova, L. Bruzzone, and G. Camp-Valls, Semisupervised one-class support vector machines for classification of remote sensing data. Geoscience and Remote Sensing, IEEE Transactions on 48(8), 3188–3197 (2010).

20. L. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. Computational Mathematics and Mathematical Physics 7(3), 200–217 (1967).

21. A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh, Clustering with Bregman Divergences. J. of Machine Learning Research 6, 1705–174 (2005).

22. W. Ostander, Plane-wave refection coefficients for gas sands at nonnormal angles of incidence. Geophysics 49(10), 1637–1648 (1984).

23. P. Jain, C. Jambhekar, and P. Pandey, Identification of gas using Vp/Vs visa-vis Poisson’s ratio. 9-th Biennial Int. Conf. and Exposition on Petroleum Geophysics, Haiderabad (2012).

24. L. Marti, N. Sanchez-Pi, L. Molina, and A. Garcia, Anomaly detection based on sensor data in petroleum industry applications. Sensors 15(2), 2774–2797 (2015).

Corresponding author: simonkatz2000@yahoo.com

Reservoir Characterization

Подняться наверх