Читать книгу Dry Beans and Pulses Production, Processing, and Nutrition - Группа авторов - Страница 55

REFERENCES

Оглавление

1 Acosta‐Gallegos, J.A., Kelly, J.D. & Gepts, P. (2007). Pre‐breeding and genetic diversity in common bean (Phaseolus vulgaris). Crop Science 47: S44–S59.

2 Adams, M.W. (1967). Basis of yield component compensation in crop plants with special reference to the field bean, Phaseolus vulgaris. Crop Science 7: 505–510.

3 Adams, M.W. (1973). Plant architecture and physiological efficiency in the field bean. In: Potential of Field Beans and Other Legumes in Latin America, pp. 266‐286. Seminar Series No 2E. Cali, Colombia: CIAT.

4 Adams, M.W. (1982). Plant architecture and yield breeding. Iowa State Journal of Research 56: 225–254.

5 Adams, M.W. (2003). Bean/cowpea collaborative research support program: Origin, structure, development. Field Crops Research 82: 81–85.

6 Aragão, F.J.L. & Faria, J.C. (2009). First transgenic geminivirus‐resistant plant in the field. Nature Biotechnology 27: 1086–1088.

7 Andersson, M.S., Saltzman, A., Virk, P.S. & Pfeiffer, W.H. (2017). Progress update: crop development of biofortified staple food crops under HarvestPlus. African Journal of Food, Agriculture, Nutrition and Development 17: 11905–11935.

8 Ariani, A., Berny Mier y Teran, J.C. & Gepts, P. (2018). Spatial and temporal scales of range expansion in wild Phaseolus vulgaris. Molecular Biology and Evolution 35: 119–131.

9 Balasubramanian, P., Slinkard, A., Tyler, R. & Vandenberg, A. (2000). A modified laboratory canning protocol for quality evaluation of dry bean (Phaseolus vulgaris L). Journal of the Science of Food & Agriculture 80: 732–738.

10 Beaver, J.S., Estévez de Jensen, C., Miklas, P.N. & Porch, T.G. (2020). Contributions in Puerto Rico to Bean, Phaseolus spp. research. Journal of Agriculture of the University of Puerto Rico 104: 43–111.

11 Beaver, J.S. & Osorno, J.M. (2009). Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168: 145–175.

12 Beaver, J.S., Rosas, J.C., Myers, J., Acosta, J., Kelly, J.D., Nchimbi‐Msolla, S., Misangu, R., Bokosi, J., Temple, S., Arnaud‐Santana, E. & Coyne, D.P. (2003). Contributions of the Bean/Cowpea CRSP to cultivar and germplasm development in common bean. Field Crops Research 82: 87–102.

13 Beebe S. (2020). Biofortification of common bean for higher iron concentration. Frontiers in Sustainable Food Systems 2020: 573449.

14 Beebe, S., Skroch, P.W., Tohme, J., Duque, M.C., Pedraza, F. & Nienhius, J. (2000). Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Science 40: 264–273.

15 Berny Mier y Teran, J.C., Konzen, E.R., Palkovic, A., Tsai, S.M. & Gepts, P. (2020). Exploration of the yield potential of Mesoamerican wild common beans from contrasting eco‐geographic regions by nested recombinant inbred populations. Frontiers in Plant Science 11: 346.

16  Berny Mier y Teran, J.C., Konzen, E.R., Medina, V., Palkovic, A., Ariani, A., Tsai, S.M., Gilbert, M.E. & Gepts, P. (2019). Root and shoot variation in relation to potential intermittent drought adaptation of Mesoamerican wild common bean (Phaseolus vulgaris L.). Annals of Botany 124: 917–932.

17 Bitocchi, E., Nanni, L., Bellucci, E., Rossi, M., Giardini, A., Zeuli, P.S., Logozzo, G., Stougaard, J., McClean, P., Attene, G. & Papa, R. (2012). Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proceedings of the National Academy of Sciences 109: E788–E796.

18 Blair, M.W., Astudillo, C., Grusak, M., Graham, R. & Beebe, S. (2009). Inheritance of seed iron and zinc content in common bean (Phaseolus vulgaris L.). Molecular Breeding 23: 197–207

19 Blair, M.W., Astudillo, C., Rengifo, J., Beebe, S.E. & Graham, R. (2011). QTL analyses for seed iron and zinc concentrations in an intra‐genepool population of Andean common beans (Phaseolus vulgaris L.). Theoretical & Applied Genetics 122: 511–521.

20 Blair, M.W. & Izquierdo, P. (2012). Use of the advanced backcross‐QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theoretical & Applied Genetics 125: 1015–1031.

21 Blair, M.W., Medina, J.I., Astudillo, C., Rengifo, J., Beebe, S.E., Machado, G. & Graham, R. (2010). QTL analyses for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theoretical & Applied Genetics 121: 1059–1070.

22 Blair, M.W., Iriarte, G. & Beebe, S. (2006). QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theoretical & Applied Genetics 112: 1149–1163.

23 Blair, M.W., Pedraza, F., Buendia, H.F., Gaitan‐Solis, E., Beebe, S.E., Gepts, P. & Tohme, J. (2003). Development of a genome‐wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theoretical & Applied Genetics 107: 1362–1374.

24 Bonfim, K., Faria, J.C., Nogueira, E.O.P.L., Mendes, E.A. & Aragão, F.J.L. (2007). RNAi‐mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant–Microbe Interactions 20: 717–726.

25 Bornowski, N., Song, Q., Kelly, J.D. (2020). QTL mapping of post‐processing color retention in two black bean populations. Theoretical & Applied Genetics 133: 3085–3100.

26 Butler, N. & Cichy, K.A. (2011). Protein content and canning quality of historically important navy bean varieties in Michigan. Annual Report of the Bean Improvement Cooperative 54: 8–9.

27 Cardona, C., Posso, C.E., Kornegay, J., Valor, J. & Serrano, M. (1989). Antibiosis effects of wild dry bean accessions on the Mexican bean weevil and the bean weevil (Coleoptera: Bruchidae). Journal of Economic Entomology 82: 310–315.

28 Chaverra, M.H. & Graham, P.H. (1992). Cultivar variation in traits affecting early nodulation in common bean. Crop Science 32: 1432–1436.

29 Checa, O.E. &, Blair, M.W. (2008). Mapping QTL for climbing ability and component traits in common bean (Phaseolus vulgaris L.). Molecular Breeding 22: 201–215.

30 Cichy, K.A., Caldas, G.V., Snapp, S.S. & Blair, M.W. (2009). QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Science 49:1742–1750.

31 Cichy, K.A., Fernandez, A., Kilian, A., Kelly, J.D., Galeano, C.H., Shaw, S., Brick, M., Hodkinson, D. & Troxtell, E. (2014). QTL analysis of canning quality and color retention in black beans (Phaseolus vulgaris L.). Molecular Breeding 33: 139–154.

32 Cichy, K.A., Porch, T.G., Beaver, J.S., Cregan, P., Fourie, D., Glahn, R.P., Grusak, M.A., Kamfwa, K., Katuuramu, D.N., McClean, P. & Mndolwa, E. (2015). A Phaseolus vulgaris diversity panel for Andean bean improvement. Crop Science 55: 2149–2160.

33 Cordain, L. (1999). Cereal grains: humanity’s double‐edged sword. World Review of Nutrition and Dietetics 84:19–73.

34 Diaz, S., Ariza‐Suarez, D., Izquierdo, P., Lobaton, J.D., de la Hoz, J.F., Acevedo, F., Duitama, J., Guerrero, A.F., Cajiao, C., Mayor, V. & Beebe, S.E. (2020). Genetic mapping for agronomic traits in a MAGIC population of common bean (Phaseolus vulgaris L.) under drought conditions. BMC Genomics 21: 1–20.

35 Fehr, W.R. (1987). Principles of Cultivar Development, vol 1. Theory and Technique. New York, NY: Macmillan Publishing Company. 536 p.

36 Freyre, R., Skroch, P.W., Geffroy, V., Adam‐Blondon, A.F., Shirmohamadali, A., Johnson, W.C., Llaca, V., Nodari, R.O., Pereira, P.A., Tsai, S.M. & Tohme, J. (1998). Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theoretical & Applied Genetics 97: 847–856.

37 Freytag, G.F. & Debouck, D.G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae‐Papilionoideae) in North America, Mexico and Central America. Fort Worth, Texas: Botanical Research Institute of Texas (BRIT). 298p.

38 Frick, B., Telford, L. & Martens, J.T. (2017). Organic Field Crop Handbook (ed. J. Wallace.) Ottawa, Canada: Canadian Organic Growers, Inc. 63p.

39 FtF (Feed the Future). (2021a). Innovation Lab for Legume Systems Research. Available at https://www.canr.msu.edu/legumelab/ (accessed March 23, 2021).

40 FtF (Feed the Future). (2021b). Bean Research Team. Available at http://arsftfbean.uprm.edu/bean/ (accessed March 23, 2021).

41 Gaultier, J. & Gulden, R. (2016). The science and art of dry bean desiccation. Crops & Soils 49: 12–15.

42 Gepts, P. (1988). A Middle American and an Andean common bean gene pool. In: Genetic Resources of Phaseolus Beans (ed. P. Gepts), pp. 375–390. Dordrecht, the Netherlands: Kluwer Academic Publishers.

43 Gepts, P. (2000). A phylogenetic and genomic analysis of crop germplasm: a necessary condition for its rational conservation and use. In: Proceedings of Stadler Genetics Symposium, June 8–10, 1998 (ed. J.P. Gustafson), pp. 163–181. Columbia, MO. Plenum.

44 Gepts, P. (2004). Who owns biodiversity, and how should the owners be compensated? Plant Physiology 134: 1295–1307.

45 Gioia, T., Logozzo, G., Marzario, S., Spagnoletti Zeuli, P. & Gepts, P. (2019). Evolution of SSR diversity from wild types to U.S. advanced cultivars in the Andean and Mesoamerican domestications of common bean (Phaseolus vulgaris). PLoS ONE 14: e0211342.

46 Graham, P.H., Rosas, J.C., Estevez de Jensen, C., Peralta, E., Tlusty, B., Acosta‐Gallegos, J. & Arraes Pereira, P.A. (2003). Addressing edaphic constraints to bean production: The Bean/Cowpea CRSP project in perspective. Field Crops Research 82: 179–192.

47 Hannah, M.A., Krämer, K.M., Geffroy, V., Kopka, J., Blair, M.W., Erban, A., Vallejos, C.E., Heyer, A.G., Sanders, F.E.T., Millner, P.A. & Pilbeam, D.J. (2007). The DL gene system in common bean (Phaseolus vulgaris L.) causes programmed root death due to a shoot‐derived inhibitory signal. New Phytologist 176: 537–549

48 Heilig, J.A. & Kelly, J.D. (2012). Performance of dry bean genotypes grown under organic and conventional production systems in Michigan. Agronomy Journal 104: 1485–1492.

49 Heilig, J.A., Beaver, J.S., Wright, E.M., Song, Q. & Kelly, J.D. (2017a). QTL analysis of symbiotic nitrogen fixation in a black bean population. Crop Science 57: 118–129.

50 Heilig, J.A., Wright, E.M. & Kelly, J.D. (2017b). Symbiotic nitrogen fixation of black and navy bean under organic production systems. Agronomy Journal 109: 2223–2230.

51 Hosfield, G.L. & Uebersax, M.A. (1980). Variability in physico‐chemical properties and nutritional components of tropical and domestic dry bean germplasm. Journal of the American Society of Horticultural Scientists 105: 246–252.

52 Islam, F.M.A., Basford, K.E., Jara, C., Redden, R.J. & Beebe, S.E. (2002). Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genetic Resources and Crop Evolution 49: 285–293

53 Kamfwa, K., Cichy, K.A. & Kelly, J.D. (2015). Genome‐wide association analysis of symbiotic nitrogen fixation in common bean. Theoretical & Applied Genetics 128: 1999–2017.

54 Katuuramu, D.N., Hart, J.P., Porch, T.G., Grusak, M.A., Glahn, R.P. & Cichy, K.A. (2018). Genome‐wide association analysis of nutritional composition‐related traits and iron bioavailability in cooked dry beans (Phaseolus vulgaris L.). Molecular Breeding 38: 1–18.

55 Katuuramu, D.N., Wiesinger, J.A., Luyima, G.B., Nkalubo, S., Glahn, R.P. & Cichy, K.A. (2021). Investigation of genotype by environment interactions for seed zinc and iron concentration and iron bioavailability in common bean. Frontiers in Plant Science 12: p.669.

56 Keller, B., Ariza‐Suarez, D., De La Hoz, J., Aparicio, J.S., Portilla‐Benavides, A.E., Buendia, H.F., Mayor, V.M., Studer, B. & Raatz, B. (2020). Genomic prediction of agronomic traits in common bean (Phaseolus vulgaris L.) under environmental stress. Frontiers in Plant Science 11: 1001.

57 Kelly, J.D. (2000). Remaking bean plant architecture for efficient production. Advances in Agronomy 71: 109–143.

58 Kelly, J.D. (2004). Advances in common bean improvement: some case histories with broader applications. Acta Horticulturae 637: 99–122.

59 Kelly, J.D. (2018). Developing improved varieties of common bean. In: Achieving Sustainable Cultivation of Grain Legumes, vol. 2 (eds. S. Sivasankar, D. Bergvinson, P. Gaur), pp. 3–17. Cambridge, UK: Burleigh Dodds Science Publishing.

60 Kelly, J.D. & Bornowski, N. (2018). Marker‐assisted breeding for economic traits in common bean. In: Biotechnologies of Crop Improvement, Volume 3 (eds. S.S. Gosal, S.H. Wani), pp. 211–238. Cham, Switzerland: Springer.

61 Kelly, J.D., Gepts, P., Miklas, P.N. & Coyne, D.P. (2003). Tagging and mapping of genes and QTL and molecular marker‐assisted selection for traits of economic importance in bean and cowpea. Field Crops Research 82: 135–154.

62 Kelly, J.D., Kolkman, J. & Schneider, K. (1998). Breeding for yield in dry bean (Phaseolus vulgaris L.). Euphytica 102: 343–356.

63 Kelly, J.D. & Miklas, P.N. (1998). The role of RAPD markers in breeding for disease resistance in common bean. Molecular Breeding 4: 1–11.

64 Kelly, J.D. & Vallejo, V.A. (2004). A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39: 1196–1207.

65 King, H.B., Rissing, A. & Chuvileva, Y.E. (2021). People of the Bean. Anthropology News – Available at https://www.anthropology‐news.org/index.php/2021/01/08/people‐of‐the‐bean/ (accessed April 3, 2021).

66 Koinange, E.M.K., Singh, S.P. & Gepts, P. (1996). Genetic control of the domestication syndrome in common bean. Crop Science 36:1037–1045.

67 Kornegay, J., White, J.W. & Ortiz de la Cruz, O. (1992). Growth habit and gene pool effects on inheritance of yield in common bean. Euphytica 62: 171–180.

68 Kusolwa, P.M., Myers, J.R., Porch, T.G., Trukhina, Y., González‐Vélez, A. & Beaver, J.S. (2016). Registration of AO‐1012‐29‐3‐3A red kidney bean germplasm line with bean weevil, BCMV, and BCMNV resistance. Journal of Plant Registrations 10: 149–153.

69 Liebenberg, M.M. & Pretorius, Z.A. (2010). Common bean rust: Pathology and control. Horticultural Reviews 37: 1–99.

70 Martin, G.B. & Adams, M.W. (1987). Landraces of Phaseolus vulgaris L. in northern Malawi. I. Regional variation. Economic Botany 41: 191–203.

71 Maxfield, L. & Crane, J.S. (2020). Zinc deficiency. Available at https://www.ncbi.nlm.nih.gov/books/NBK493231/ (accessed April 2, 2021).

72 Mendoza, F. A., Kelly, J. D. & Cichy, K. A. (2017). Automated prediction of sensory scores for color and appearance in canned black beans (Phaseolus vulgaris L.) using machine vision. International Journal of Food Properties 20: 83–99.

73 Miklas, P.N., Fourie, D., Trapp, J., Davis, J. & Myers, J.R. (2014). New loci including Pse‐6 conferring resistance to halo bacterial blight on chromosome Pv04 in common bean. Crop Science 54: 2099–2108.

74 Miklas, P.N., Kelly, J.D., Beebe, S.E. & Blair, M.W. (2006). Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 147: 105–131.

75 Miklas, P.N., Osorno, J.M., Chaves, B. & Cichy, K.A. (2020) Agronomic performance and cooking quality characteristics for slow‐darkening pinto beans. Crop Science 60: 2317–2327.

76 MSU (Michigan State University). (2009). One Hundred Years of Bean Breeding at Michigan State University: A Chronology. Available at https://www.canr.msu.edu/uploads/files/Research_Center/Saginaw_Valley/100YrsMSUBeanBreeding.pdf (accessed March 23, 2021).

77 Naderpour, M., Lund, O.S., Larsen, R. & Johansen, E. (2010). Potyviral resistance derived from cultivars of Phaseolus vulgaris carrying bc‐3 is associated with the homozygotic presence of a mutated eIF4E allele. Molecular Plant Pathology 11: 255–263.

78 NRC (National Research Council, U.S.). (1972). Genetic vulnerability of dry beans. In: Genetic Vulnerability of Major Crops (pp. 224–234). Washington, DC: National Academy of Sciences.

79 Oladzad, A., González, A., Macchiavelli, R., de Jensen, C. E., Beaver, J., Porch, T. & McClean, P. (2020). Genetic factors associated with nodulation and nitrogen derived from atmosphere in a middle American common bean panel. Frontiers in Plant Science 11: 576078.

80 Pallottini, L., Garcia, E., Kami, J., Barcaccia, G. & Gepts, P. (2004). The genetic anatomy of a patented yellow bean. Crop Science 44: 968–977.

81 Paredes, M.C., Becerra, V.V. & Tay, J.U. (2009). Inorganic nutritional composition of common bean (Phaseolus vulgaris L.) genotypes race Chile. Chilean Journal of Agricultural Research 69: 486–495.

82 Parker, T., Palkovic, A., Brummer, E. C. & Gepts, P. (2021a). Registration of ‘UC Rio Zape’ heirloom‐like dry bean. Journal of Plant Registrations 15: 37–42.

83 Parker, T., Palkovic, A., Brummer, E. C. & Gepts, P. (2021b). Registration of ‘UC Tiger's Eye’ heirloom‐like dry bean. Journal of Plant Registrations 15: 16–20.

84 Parker, T., Palkovic, A., Brummer, E. C. & Gepts, P. (2021c). Registration of ‘UC Southwest Red’ heirloom‐like red and white mottled bean. Journal of Plant Registrations 15: 21–27.

85 Parker, T., Palkovic, A., Brummer, E. C. & Gepts, P. (2021d). Registration of ‘UC Southwest Gold’ heirloom‐like gold and white mottled bean. Journal of Plant Registrations 15: 48–52.

86 Parker, T., Palkovic, A., Brummer, E. C. & Gepts, P. (2021e). Registration of ‘UC Sunrise’ heirloom‐like orange and white mottled bean. Journal of Plant Registrations 15: 43–47.

87 Peng, S., Huang, J., Cassman, K.G., Laza, R.C., Visperas, R.M. & Khush, G.S. (2010). The importance of maintenance breeding: A case study of the first miracle rice variety‐IR8. Field Crops Research 119: 342–378.

88 Polania, J.A., Poschenrieder, C., Beebe, S. & Rao, I.M. (2016). Effective use of water and increased dry matter partitioned to grain contribute to yield of common bean improved for drought resistance. Frontiers in Plant Science 7: 660.

89 Porch, T.G., Smith, J.R., Beaver, J.S., Griffiths, P.D. & Canaday, C.H. (2010). TARS‐HT1 and TARS‐HT2 heat‐tolerant dry bean germplasm. HortScience 45: 1278–1280.

90 Porch, T.G., Beaver, J.S., Debouck, D.G., Jackson, S.A., Kelly, J.D. & Dempewolf, H. (2013). Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3: 433–461.

91 Raatz, B., Mukankusi, C., Lobaton, J.D., Male, A., Chisale, V., Amsalu, B., Fourie, D., Mukamuhirwa, F., Muimui, K., Mutari, B. & Nchimbi‐Msolla, S. (2019). Analyses of African common bean (Phaseolus vulgaris L.) germplasm using a SNP fingerprinting platform: diversity, quality control and molecular breeding. Genetic Resources and Crop Evolution 66: 707–722.

92 Reinprecht, Y., Schram, L., Marsolais, F., Smith, T.H., Hill, B. & Pauls, K.P. (2020). Effects of nitrogen application on nitrogen fixation in common bean production. Frontiers in Plant Science 11: 1172.

93 Richard, M., Gratias, A., Alvarez Diaz, J.C., Thareau, V., Pflieger, S., Meziadi, C., Blanchet, S., Marande, W., Bitocchi, E., Papa, R. & Miklas, P.N. (2021). A common bean truncated CRINKLY4 kinase controls gene‐for‐gene resistance to the fungus Colletotrichum lindemuthianum. Journal of Experimental Botany 72: 3569–3581.

94 Rodrigues, L.L., Rodrigues, L.A., de Souza, T.L., Melo, L.C. & Pereira, H.S. (2019). Genetic control of seed coat darkening in common bean cultivars from three market classes. Crop Science 59: 2046–2054.

95 Saltzman, A., Birol, E., Oparinde, A., Andersson, M.S., Asare‐Marfo, D., Diressie, M.T., Gonzalez, C., Lividini, K., Moursi, M. & Zeller, M. (2017). Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Annals of the New York Academy of Sciences 1390: 104–114.

96 Schmutz, J., McClean, P.E., Mamidi, S., Wu, G.A., Cannon, S.B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C. & Torres‐Torres, M. (2014). A reference genome for common bean and genome‐wide analysis of dual domestications. Nature Genetics 46: 707–713.

97 Schröder, S., Mamidi, S., Lee, R., McKain, M.R., McClean, P.E. & Osorno, J.M. (2016). Optimization of genotyping by sequencing (GBS) data in common bean (Phaseolus vulgaris L.). Molecular Breeding 36: p.6.

98 Schwartz, H.F. & Singh, S.P. (2013). Breeding common bean for resistance to white mold: a review. Crop Science 53: 1832–1844.

99 Simons, K.J., Oladzad, A., Lamppa, R., Maniruzzaman, M., McClean, P.E., Osorno, J.M. & Pasche, J.S. (2021). Using breeding populations with a dual purpose: cultivar development and gene mapping. A case study using resistance to common bacterial blight in dry bean (Phaseolus vulgaris L.). Frontiers in Plant Science 12: 161.

100 Singh, S.P., Gepts, P. & Debouck, D.G. (1991). Races of common bean (Phaseolus vulgaris, Fabaceae). Economic Botany 45: 379–396.

101 Singh, S.P. & Miklas, P.N. (2015). Breeding common bean for resistance to common blight: A review. Crop Science 55: 971–984.

102 Singh, S.P. & Schwartz, H.F. (2010). Breeding common bean for resistance to diseases: A review. Crop Science 50: 2199–2223.

103 Singh, S.P., Terán, H., Lema, M., Webster, D.M., Strausbaugh, C.A., Miklas, P.N., Schwartz, H.F. & Brick, M.A. (2007). Seventy‐five years of breeding dry bean of the Western USA. Crop Science 47: 981–989.

104 Singh, S.P. & Westermann, D.T. (2002). A single dominant gene controlling resistance to soil zinc deficiency in common bean. Crop Science 42: 1071–1074.

105 Singh, S.P. (1994). Gamete selection for simultaneous improvement of multiple traits in common bean. Crop Science 34:352–355.

106 Singh, S.P. (1995). Selection for seed yield in Middle American versus Andean × Middle American interracial common–bean populations. Plant Breeding 114: 269–271.

107 Singh, S.P. (1982). A key for identification of different growth habits of Phaseolus vulgaris L. Annual Report of the Bean Improvement Cooperative 25: 92–94.

108 Soltani, A., Bello, M., Mndolwa, E., Schroder, S., Moghaddam, S.M., Osorno, J.M., Miklas, P.N. & McClean, P.E. (2016). Targeted analysis of dry bean growth habit: interrelationship among architectural, phenological and yield components. Crop Science 56: 3005–3015.

109 Soltani, A., Moghaddam, S.M., Oladzad, A., Walter, K., Kearns, P.J., Vasquez‐Guzman, J., Mamidi, S., Lee, R., Shade, A.L., Jacobs, J.L. & Chilivers, M.I. (2018). Genetic analysis of flooding tolerance in an Andean diversity panel of dry bean (Phaseolus vulgaris L.). Frontiers in Plant Science 9: 767.

110 Soltani, A., Walter, K.A., Wiersma, A.T., Santiago, J.P., Quiqley, M., Chitwood, D., Porch, T.G., Miklas, P., McClean, P.E., Osorno, J.M. & Lowry, D.B. (2021). The genetics and physiology of seed dormancy, a crucial trait in common bean domestication. BMC Plant Biology 21: 58.

111 Song, G‐Q., Han, X., Wiersma, A.T., Zong, X., Awale, H.E. & Kelly, J.D. (2020). Induction of competent cells for Agrobacterium tumefaciens‐mediated stable transformation of common bean (Phaseolus vulgaris L.). PLoS One 15: e0229909.

112 Song, Q., Jia, G., Hyten, D.L., Jenkins, J., Hwang, E.Y., Schroeder, S.G., Osorno, J.M., Schmutz, J., Jackson, S.A., McClean, P.E. & Cregan, P.B. (2015). SNP assay development for linkage map construction, anchoring whole‐genome sequence, and other genetic and genomic applications in common bean. G3: Genes, Genomes, Genetics 5: 2285–2290.

113 Souza, T.L.P.O., Faria, J.C., Aragão, F.J.L., Peloso, M.J.D., Faria, L.C., Wendland, A., Aguiar, M.S., Quintela, E.D., Melo, C.L.P., Hungria, M., Vianello, R.P., Pereira, H.S. & Melo L.C. (2018). Agronomic Performance and yield stability of the RNA interference‐based Bean golden mosaic virus‐resistant common bean. Crop Science 58: 579–591.

114 Strock, C.F., Burridge, J., Massas, A.S., Beaver, J., Beebe, S., Camilo, S.A., Fourie, D., Jochua, C., Miguel, M., Miklas, P.N. & Mndolwa, E. (2019). Seedling root architecture and its relationship with seed yield across diverse environments in Phaseolus vulgaris. Field Crops Research 237: 53–64.

115 Swegarden, H.R., Sheaffer, C.C. & Michaels, T.E. (2016). Yield stability of heirloom dry bean (Phaseolus vulgaris L.) cultivars in Midwest organic production. HortScience 51: 8–14.

116 Terán, H., Lema, M., Webster, D. & Singh, S.P. (2009). 75 years of breeding pinto bean for resistance to diseases in the United States. Euphytica 167: 341–351.

117 Thomas, C.V. & Waines, J.G. (1984). Fertile backcross and allotetraploid plants from crosses between tepary beans and common beans. Journal of Heredity 75: 93–98.

118 Thompson, M.D., Brick, M.A., McGinley, J.N. & Thompson, H.J. (2009). Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Science 49: 179–186.

119 Tock, A.J., Fourie, D., Walley, D.G., Holub, E.B., Soler, A., Cichy, K.A., Pastor‐Corrales, M.A., Song, Q., Porch, T.G., Hart, J.P., Vasconcellos, R.C.C., Vicente, J.G., Barker, G.C. & Miklas, P.N. (2017). Genome‐wide linkage and association mapping of halo blight resistance in common bean to race 6 of the globally important bacterial pathogen. Frontiers in Plant Sciences 8: 1170.

120 Trapp, J., Urrea, C.A., Cregan, P.B. & Miklas, P.N. (2015). QTL for yield under multiple stress and drought conditions in a dry bean population. Crop Science 55: 1596–1607.

121 USDA‐NASS (US Dept of Agriculture, National Agricultural Statistics Service). (2020a). Acreage (Report # ISSN:1949‐1522). Available at https://www.nass.usda.gov/Publications/Todays_Reports/reports/acrg0620.pdf (accessed March 1, 2021).

122 USDA‐NASS (US Dept of Agriculture, National Agricultural Statistics Service). (2020b). Quick Stats. Available at https://quickstats.nass.usda.gov/ (accessed March 1, 2021).

123 van der Merwe, D., Osthoff, G.& Pretorius, A.J. (2006). Comparison of the canning quality of small white beans (Phaseolus vulgaris L.) canned in tomato sauce by a small‐scale and an industrial method. Journal of the Science of Food & Agriculture 86: 1046–1056.

124 Vandemark, G.J., Fourie, D. & Miklas, P.N. (2008). Genotyping with real‐time PCR reveals recessive epistasis between independent QTL conferring resistance to common bacterial blight in dry bean. Theoretical & Applied Genetics 117: 513–522.

125 Vandemark, G.J., Brick, M.A., Osorno, J.M., Kelly, J.D. & Urrea, C.A. (2014). Edible grain legumes. In: Yield Gains in Major U.S. Field Crops, vol. 33 (eds. S. Smith, B. Diers, J. Specht, B. Carver B), pp. 87–123. Madison, WA: ASA, CSSA, and SSSA.

126 Vasconcellos, R.C.C., Oraguzie, O.B., Soler, A., Arkwazee, H., Myers, J., Fereira, J.J., Song, Q., McClean, P. & Miklas, P.N. (2017). Meta‐QTL for resistance to white mold in common bean. PLoS One 12: 0171685.

127 Vaz Bisneta, M. & Gonçalves‐Vidigal, M.C. (2020). Integration of anthracnose resistance loci and RLK and NBS‐LRR‐encoding genes in the Phaseolus vulgaris L. genome. Crop Science 60: 2901–2918.

128 Veltcheva, M., Svetleva, D., Petkova, S. & Perl, A. (2005). In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.): Problems and progress. Scientia Horticulturae 107: 2–10.

129 Viteri, D.M., Cregan, P.B., Trapp, J.J., Miklas, P.N. & Singh, S.P. (2014). A new common bacterial blight resistance QTL in VAX 1 common bean and interaction of the new QTL, SAP6, and SU91 with bacterial strains. Crop Science 54: 1598–1608.

130 Wessells, K.R. & Brown, K.H. (2012). Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PloS One 7: 50568.

131 White, P.J. & Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182: 49–84.

132 Wilker, J., Navabi, A., Rajcan, I., Marsolais, F., Hill, B., Torkamaneh, D. & Pauls, K.P. (2019). Agronomic performance and nitrogen fixation of heirloom and conventional dry bean varieties under low‐nitrogen field conditions. Frontiers in Plant Science 10: 952.

133 Wu, J., Wang, L., Fu, J., Chen, J., Wei, S., Zhang, S., Zhang, J., Tang, Y., Chen, M., Zhu, J. & Lei, L. (2020). Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline. Nature Genetics 52: 118–125.

134 Zaidi, S.S.A, Mahas A., Vanderschuren H., Mahfouz, M.M. (2020). Engineering crops of the future: CRISPR approaches to develop climate‐resilient and disease‐resistant plants. Genome Biology 21: 1–19.

135 Zhou, J., Khot, L.R., Boydston, R.A., Miklas, P.N. & Porter, L. (2017). Low altitude remote sensing technologies for crop stress monitoring: a case study on spatial and temporal monitoring of irrigated pinto bean. Precision Agriculture 19: 555–569.

Dry Beans and Pulses Production, Processing, and Nutrition

Подняться наверх