Читать книгу Data Mining and Machine Learning Applications - Группа авторов - Страница 57
References
Оглавление1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J., Models and issues in data stream systems, in: Proceedings of PODS, 2002.
2. Golab, L. and Ozsu, M.T., Issues in Data Stream Management. SIGMOD Rec., 32, 2, 5–14, June 2003.
3. Henzinger, M., Raghavan, P., Rajagopalan, S., Computing on data streams. Technical Note 1998-011, Digital Systems Research Center, Palo Alto, CA, May 1998.
4. Muthukrishnan, S., Data streams: Algorithms and applications. Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.
5. Muthukrishnan, S., Seminar on Processing Massive Data Sets, Available Online: http://athos.rutgers.edu/%7Emuthu/stream-seminar.html, 2003.
6. Garofalakis, M., Gehrke, J., Rastogi, R., Querying and mining data streams: You only get one look a tutorial. SIGMOD Conference 2002, p. 635, 2002.
7. Kargupta, H., CAREER: Ubiquitous Distributed Knowledge Discovery from Heterogeneous Data. NSF Information and Data Management (IDM) Workshop, 2001.
8. Muthukrishnan, S., Data streams: Algorithms and applications. Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.
9. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U., Multidimensional sequential pattern mining, in: Proceedings of the Tenth International Conference on Information and Knowledge Management, ACM, pp. 81–88, 2001.
10. Mabroukeh, N.R. and Ezeife, C.I., A taxonomy of sequential pattern mining algorithms. ACM Comput. Surv. (CSUR), 43, 1, 3, 2010.
11. Garofalakis, M.N., Rastogi, R., Shim, K., Spirit: Sequential pattern mining with regular expression constraints, in: VLDB, vol. 99, pp. 7–10, 1999.
12. Agrawal, R. and Srikant, R., Mining sequential patterns, in: Data Engineering, 1995. Proceedings of the Eleventh International Conference, IEEE, pp. 3–14, 1995.
13. Echo, E., Raïssi, C., Ienco, D., Jay, N., Napoli, A., Poncelet, P., Quantin, C., Teisseire, M., Healthcare trajectory mining by combining multidimensional components and itemsets, in: International Workshop on New Frontiers in Mining Complex Patterns, Springer, pp. 109–123, 2012.
14. Yu, C.-C. and Chen, Y.-L., Mining sequential patterns from multidimensional sequence data. IEEE Trans. Knowl. Data Eng., 17, 1, 136–140, 2005.
15. Raïssi, C. and Plantevit, M., Mining multidimensional sequential patterns over data streams, in: International Conference on Data Warehousing and Knowledge Discovery, Springer, pp. 263–272, 2008.
16. Padhy, N. and Panigrahi, R., Multi relational data mining approaches A data mining technique. International Journal of Computer Applications (0975 – 8887) Volume 57– No.17, pp. 23-32, November 2012, arXiv preprint arXiv:1211.3871, 2012.
17. Džeroski, S., Multi-relational data mining: An introduction. ACM SIGKDD Explor. Newsl., 5, 1, 1–16, 2003.
18. Paulheim, H., Exploiting linked open data as background knowledge in data mining. DMoLD, vol. 1082, 2013.
19. Siebes, A. and Struzik, Z., Complex data: Mining using patterns, in: Pattern Detection and Discovery, pp. 24–35, Springer, Berlin, 2002.
20. Fahed, L., Brun, A., Boyer, A., Extraction de règles d’épisodes minimales dans des séquences complexes. EGC, pp. 545–548, 2014.
21. Wu, C.-W., Lin, Y.-F., Yu, P.S., Tseng, V.S., Mining high utility episodes in complex event sequences, in: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 536–544, 2013.
22. Huang, K.-Y. and Chang, C.-H., Efficient mining of frequent episodes from complex sequences. Inf. Syst., 33, 1, 96–114, 2008.
23. Beyer, K., Goldstein, J., Ramakrishan, R., Shaft, U., When Is Nearest Neighbor Meaningful? Proc. of the 7th International Conference on Database Theory, pp. 217–235, 1999.
24. Liu, H. and Yu, L., Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Trans. Knowl. Data Eng., 17, 3, 1–12, 2005.
25. Raja, R., Sinha, T.S., Dubey, R.P., Soft Computing and LGXP Techniques for Ear Authentication using Progressive Switching Pattern. Int. J. Eng. Future Technol., 2, 2, 66–86, 2016.
26. Raja, R., Sinha, T.S., Dubey, R.P., Orientation Calculation of human Face Using Symbolic techniques and ANFIS. Int. J. Eng. Future Technol., 7, 7, 37–50, 2016.
27. Cohena, G., Hilariob, M., Saxc, H., Hugonnetc, S., Geissbuhler, A., Learning from imbalanced data in surveillance of nosocomial infection. Intell. Data Anal. Med., 37, 1, 7–18, 2006.
28. Czyzewski, Mining Knowledge in Noisy Audio Data, in: Proc. 2nd Int. Conf. on KD and Data Mining, pp. 220–225, 1996.
29. Wang, D., Kim, Y.-S., Park, S.C., Lee, C.S., Han, Y.K., Learning-Based Neural Similarity Metrics for Multimedia Data Mining. Soft Comput., 11, 4, 335–340, February 2007.
30. Chien, S., Fisher, F., Mortensen, H., Lo, E., Greeley, R., Using Artificial Intelligence Planning to Automate Science Data Analysis for Large Image Databases, in: Proc. 3rd Int. Conf. on Knowledge Discovery and Data Mining, pp. 147–150, 1997.
31. Zaïane, O.R., Han, J., Li, Z.-N., Chee, S.H., Chiang, J.Y., MultiMediaMiner: A System Prototype for MultiMedia Data Mining, in: Intelligent Database Systems Research Laboratory and Vision and Media Laboratory report, 2009.
32. Witten, I.H., Text mining, in: Computer Science, University of Waikato, Hamilton, New Zealand, 2005.
33. Ordenoz, C. and Omiecinski, E., Discovering association rules based on image content, in: ADL ‘99: Proceedings of the IEEE Forum on Research and Technology Advances in Digital libraries, IEEE Computer Society, Washington, DC, p. 38, 1999.
34. Vijayakumar, V. and Nedunchezhian, R., A study on video data mining. Int. J. Multimed. I Inf. Retr., 1, 3, 153–172, Publisher Springer-Verlag, October 2012.
35. Brunner, R.J., Djorgovski, S.G., Prince, T.A., Szalay, A.S., Massive Datasets in Astronomy, in: Handbook of Massive Datasets, J. Abello, P. Pardalos, M. Resende, (Eds.), p. 931, Kluwer Academic Publishers, New York, 2002.
36. NASA, Science Data Users Handbook, Landsat Project Science Office. Goddard Space Flight Center, Greenbelt, 2002.
37. NASA, EOS Reference Handbook, A Guide to NASA’s Earth Science Enterprise and the Earth Observing System, EOS project science office, Greenbelt, 1999.
38. Vucetic, S., Fiez, T., Obradovic, Z., Analyzing the Influence of Data Aggregation and Sampling Density on Spatial Estimation. Water Resour. Res., 36, 12, 3721–3731, 2000.
39. Han, J., Altman, R.B., Kumar, V., Mannila, H., Pregibon, D., Emerging Scientific Applications in Data Mining. Commun. ACM, 45, 8, 54–58, 2002.
40. Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares Jr., M., Haussler, D., Knowledge-based Analysis of Microarray Gene Expression Data By Using Support Vector Machines. Proc. Natl. Acad. Sci., 97, 262–267, 2000.
41. Barrett, E.C. and Curtis, F.L., Introduction to Environmental Remote Sensing, Stanley Thornes Pub. Ltd, Cheltenham, UK, 1999.
42. Kar, K. and Raja, R., A Review on Weather Prediction using Data Mining Techniques. International Conference on New Frontiers of Engineering Science, Management and Humanities (ICNFESMH-2017) Associated with national Institute of Technical Teachers Training and Research Program (NITTTR), 21 May 2019.
43. Kar, K., Raja, R., Chopra, J., Extreme Weather Event Change Prediction using CDF. International Conference on Advancement in Engineering, Applied Science and Management (ICAEASM-2017) at Centre for Development of Advanced Computing (C-DAC), Juhu, Mumbai, Maharashtra (India), pp. 448–452.
44. Nogues-Paegle, J., Mo, K., Paegle, J., Predictability of the NCEP-NCAR Reanalysis Model During Austral Summer. Mon. Weather Rev., 126, 3135–3152, 1998.
45. Kamath, C., Introduction to scientific data mining. Presented at Mathematical Challenges in Scientific Data Mining, Short Program at Institute for Pure and Applied Mathematics, Univ. of California Los Angeles, 2002.
46. Pallavi, S., Ramya laxmi, K., Ramya, N., Study and Analysis of Modified Mean Shift Method and Kalman Filter for Moving object Detection and Tracking, in: 3rd International Conference on Computational Intelligence and Informatics (ICCII-2018), held during 28–29 Dec 2018, 2018.
47. Burl, M., Kamatch, C., Kumar, V., Namburu, R., Third Workshop on Mining Scientific Datasets. First SIAM Int’l Conf. Data Mining, Chicago, IL, 2001.
48. Kumar, V., Burl, M., Kamatch, C., Namburu, R., Fifth Workshop on Mining Scientific Datasets, Second SIAM Int’l. Conf. Data Mining, Arlignton, VA, 2002.
49. Grossman, R.L., Creel, E., Harinath, S., Mazzucco, M., Reinhart, G., Turinskiy, A., Terabyte Challenge 2000: Project DataSpace. Workshop on Mining Scientific Datasets, University of Minnesota, Minneapolis, MN, 2000.
50. Kumar, S., Jain, A., Shukla, A.P., Singh, S., Rani, S., A Comparative Analysis of Machine Learning Algorithms for Detection of Organic and Non-Organic Cotton Diseases. Math. Probl. Eng., Special Issue—Deep Transfer Learning Models for Complex Multimedia Applications, vol. 1, pp. 1–18, 2021.
51. Lazarevic, A. and Obradovic, Z., Knowledge Discovery in Multiple Spatial Databases. Neural Comput. Appl., 10, 4, 339–350, 2002.
52. Roddick, J.F. and Spiliopoulou, M., A Bibliography of Temporal, Spatial, and Spatio-Temporal Data Mining Research. SIGKDD Explor., 1, 34–38, 1999.
53. Han, J., Altman, R.B., Kumar, V., Mannila, H., Pregibon, D., Emerging Scientific Applications in Data Mining. Commun. ACM, 45, 8, 54–58, 2002.
54. Niyogi, P., Girosi, F., Poggio, T., Incorporating Prior Information in Machine Learning by Creating Virtual Examples. Proc. IEEE, 86, 11, 2196–2209, 1998.
55. Domingos, P. and Hulten, G., Mining High-Speed Data Streams. Knowl. Discovery Data Min., 2, 71–80, 2000.
56. Pokrajac, D., Hoskinson, R.L., Obradovic, Z., Modeling spatiotemporal Data with a Short Observation History. Knowl. Inf. Syst., 5, pp. 368–386, 2003.
57. Hall, D. and Llinas, J., Handbook of Multisensor Data Fusion, CRC Press, Boca Raton, 2001.
58. Lester, H. and Arridge, S.R., A Survey of Hierarchical Non-Linear Medical Image Registration. Pattern Recognit., 32, 129–149, 1999.
59. Calì, D., Andersen, R.K., Müller, D., Olesen, B.W., Analysis of occupants’ behavior related to the use of windows in German households. Energy Build., 103, 54–69, 2016.
60. Andersen, R.V., Olesen, B.W., Toftum, J., Modeling window opening behavior in Danish dwellings. Proceedings of Indoor Air, 2011.
61. Sahu, A.K., Sharma, S., Tanveer, M., Internet of Things attack detection using hybrid. Deep Learning Model. Comput. Commun., 176, 146–154, 2021, https://doi.org/10.1016/j.comcom.2021.05.024.
62. Mahmood, M.R., Patra, R.K., Raja, R., Sinha, G.R., A Novel Approach for Weather prediction using forecasting analysis and Data Mining Techniques, in: 7th International Conference on Innovations in Computer Science and Engineering, 27–28 July 2018.
63. Shi, S. and Zhao, B., Occupants’ interactions with windows in 8 residential apartments in Beijing and Nanjing, China. Build. Simul.-China. Tsinghua University Press, 9, 2, pp. 221–231, 2016.
64. D’Oca, and Hong, T., A data-mining approach to discover patterns of the window opening and closing behavior in offices. Build. Environ., 82, 726–739, 2014.
65. Dodge, Y., Statistical data analysis is based on the L1-norm and related methods, Birkhäuser, Berlin, 2012.
66. Moore, K-means and Hierarchical Clustering—Tutorial Slides, School of Computer Science. Carnegie Mellon University, 2007.
1 *Corresponding author: phdknr@gmail.com