Читать книгу Artificial Intelligence for Renewable Energy Systems - Группа авторов - Страница 2

Table of Contents

Оглавление

Cover

Title Page

Copyright

Preface

1 Analysis of Six-Phase Grid Connected Synchronous Generator in Wind Power Generation 1.1 Introduction 1.2 Analytical Modeling of Six-Phase Synchronous Machine 1.3 Linearization of Machine Equations for Stability Analysis 1.4 Dynamic Performance Results 1.5 Stability Analysis Results 1.6 Conclusions References Appendix Symbols Meaning

2 Artificial Intelligence as a Tool for Conservation and Efficient Utilization of Renewable Resource 2.1 Introduction 2.2 AI in Water Energy 2.3 AI in Solar Energy 2.4 AI in Wind Energy 2.5 AI in Geothermal Energy 2.6 Conclusion References

3 Artificial Intelligence–Based Energy-Efficient Clustering and Routing in IoT-Assisted Wireless Sensor Network 3.1 Introduction 3.2 Related Study 3.3 Clustering in WSN 3.4 Research Methodology 3.5 Conclusion References

4 Artificial Intelligence for Modeling and Optimization of the Biogas Production 4.1 Introduction 4.2 Artificial Neural Network 4.3 Evolutionary Algorithms 4.4 Conclusion References

5 Battery State-of-Charge Modeling for Solar PV Array Using Polynomial Regression 5.1 Introduction 5.2 Dynamic Battery Modeling 5.3 Results and Discussion 5.4 Conclusion References

10  6 Deep Learning Algorithms for Wind Forecasting: An Overview Nomenclature 6.1 Introduction 6.2 Models for Wind Forecasting 6.3 The Deep Learning Paradigm 6.4 Deep Learning Approaches for Wind Forecasting 6.5 Research Challenges 6.6 Conclusion References

11  7 Deep Feature Selection for Wind Forecasting-I 7.1 Introduction 7.2 Wind Forecasting System Overview 7.3 Current Forecasting and Prediction Methods 7.4 Deep Learning–Based Wind Forecasting 7.5 Case Study References

12  8 Deep Feature Selection for Wind Forecasting-II 8.1 Introduction 8.2 Literature Review 8.3 Long Short-Term Memory Networks 8.4 Gated Recurrent Unit 8.5 Bidirectional Long Short-Term Memory Networks 8.6 Results and Discussion 8.7 Conclusion and Future Work References

13  9 Data Falsification Detection in AMI: A Secure Perspective Analysis 9.1 Introduction 9.2 Advanced Metering Infrastructure 9.3 AMI Attack Scenario 9.4 Data Falsification Attacks 9.5 Data Falsification Detection 9.6 Conclusion References

14  10 Forecasting of Electricity Consumption for G20 Members Using Various Machine Learning Techniques 10.1 Introduction 10.2 Dataset Preparation 10.3 Results and Discussions 10.4 Conclusion Acknowledgement References

15  11 Use of Artificial Intelligence (AI) in the Optimization of Production of Biodiesel Energy 11.1 Introduction 11.2 Indian Perspective of Renewable Biofuels 11.3 Opportunities 11.4 Relevance of Biodiesel in India Context 11.5 Proposed Model 11.6 Conclusion References

16  Index

17  End User License Agreement

Artificial Intelligence for Renewable Energy Systems

Подняться наверх