Читать книгу Congo Basin Hydrology, Climate, and Biogeochemistry - Группа авторов - Страница 32
REFERENCES
Оглавление1 Adebiyi, A. A., & Zuidema, P. (2016). The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments. Quarterly Journal of the Royal Meteorological Society, 142(697), 1574–1589. doi: 10.1002/qj.2765
2 Aloysius, N. R., Sheffield, J., Saiers, J. E., Li, H., & Wood, E. F. (2016). Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. Journal of Geophysical Research: Atmospheres, 121(1), 130–152. doi: 10.1002/2015jd023656
3 Berhane, F., Zaitchik, B., & Badr, H. S. (2015). The Madden–Julian Oscillation’s Influence on Spring Rainy Season Precipitation over Equatorial West Africa*. Journal of Climate, 28(22), 8653–8672. doi: 10.1175/jcli‐d‐14‐00510.1
4 Bombardi, R. J., Kinter, J. L. and Frauenfeld, O. W. (2019). A global gridded dataset of the characteristics of the rainy and dry seasons. Bulletin of the American Meteorological Society, 100(7), 1315–1328. https://doi.org/10.1175/BAMS‐D‐18‐0177.1
5 Brummett, R., Tanania, C., Pandi A., Ladel J., Munzini Y., Russell A., et al. (2009). Ressources en eau et biens et services liés à l’écosystème forestier. In: Wasseige, C., Devers, D., de Marcen, P., Eba’a Atyi, R., Nasi, R., & Mayaux, P. (Eds.) Les forêts du Bassin du Congo. Office des publications de l'Union européenne, Luxembourg. doi: 10.2788/32456
6 Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2015). TRMM LIS Climatology of Thunderstorm Occurrence and Conditional Lightning Flash Rates*. Journal of Climate, 28(16), 6536–6547. doi: 10.1175/jcli‐d‐15‐0124.1
7 Clulow, A. D., Strydom, S., Grant, B., Savage, M. J., & Everson, C. S. (2018). Integration of a Ground Based Lightning Warning System into a Mining Operation in the Democratic Republic of the Congo. Weather, Climate, and Society, 10(4), 899–912. doi: 10.1175/wcas‐d‐18‐0004.1
8 Collier, A. B., & Hughes, A. R. (2011). Lightning and the African ITCZ. Journal of Atmospheric and Solar‐Terrestrial Physics, 73(16), 2392–2398. doi: 10.1016/j.jastp.2011.08.010
9 Cook, K. H., & Vizy, E. K. (2015). The Congo Basin Walker circulation: Dynamics and connections to precipitation. Climate Dynamics, 47(3–4), 697–717. doi: 10.1007/s00382‐015‐2864‐y
10 Cook, K. H., & Vizy, E. K. (2019). Contemporary Climate Change of the African Monsoon Systems. Current Climate Change Reports, 5(3), 145–159. doi: 10.1007/s40641‐019‐00130‐1
11 Cook, K. H. (2015). Role of inertial instability in the West African monsoon jump. Journal of Geophysical Research: Atmospheres, 120(8), 3085–3102. doi: 10.1002/2014jd022579
12 Creese, A., Washington, R., & Munday, C. (2019). The Plausibility of September–November Congo Basin Rainfall Change in Coupled Climate Models. Journal of Geophysical Research: Atmospheres, 124(11), 5822–5846. doi: 10.1029/2018jd029847
13 Creese, A., & Washington, R. (2016). Using qflux to constrain modeled Congo Basin rainfall in the CMIP5 ensemble. Journal of Geophysical Research: Atmospheres, 121(22). doi: 10.1002/2016jd025596
14 Creese, A., & Washington, R. (2018). A Process‐Based Assessment of CMIP5 Rainfall in the Congo Basin: The September–November Rainy Season. Journal of Climate, 31(18), 7417–7439. doi: 10.1175/jcli‐d‐17‐0818.1
15 Dezfuli, A. K., & Nicholson, S. E. (2013). The relationship of rainfall variability in western equatorial Africa to the tropical oceans and atmospheric circulation. Part II: The boreal autumn. Journal of Climate, 26(1), 66–84. doi: 10.1175/jcli‐d‐11‐00686.1
16 Dezfuli, A. K., Zaitchik, B. F., and Gnanadesikan, A. (2015). Regional atmospheric circulation and rainfall variability in south equatorial Africa. Journal of Climate, 28, 809–818. https://doi.org/10.1175/JCLI‐D‐14‐00333.1
17 Dosio, A., Jones, R. G., Jack, C., Lennard, C., Nikulin, G., & Hewitson, B. (2019). What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Climate Dynamics, 53(9–10), 5833–5858. doi: 10.1007/s00382‐019‐04900‐3
18 Dyer, E. L., Jones, D. B., Nusbaumer, J., Li, H., Collins, O., Vettoretti, G., & Noone, D. (2017). Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. Journal of Geophysical Research: Atmospheres, 122(13), 6882–6898. doi: 10.1002/2016jd026240
19 Eba’a Atyi, R., Martius, C., Schmidt, L., Hirsch, F., Tadoum, M., Bayol, N., et al. (2015): The forests of Central Africa: an increased contribution to the mitigation of climate change. In: de Wasseige, C., Eba’a Atyi, R., & Doumenge, C. (Eds.), Les forêts du Bassin du Congo‐Etat de Forêts 2015. Weyrich. Belgique. 128 pp.
20 Fotso‐Kamga, G., Fotso‐Nguemo, T. C., Diallo, I., Yepdo, Z. D., Pokam, W. M., Vondou, D. A., & Lenouo, A. (2020). An evaluation of COSMO‐CLM regional climate model in simulating precipitation over Central Africa. International Journal of Climatology, 40(5), 2891–2912. doi: 10.1002/joc.6372
21 Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1). doi: 10.1038/sdata.2015.66
22 Guo, X., Lu, C., Zhao, T., Zhang, G., & Liu, Y. (2015). An observational study of entrainment rate in deep convection. Atmosphere, 6(9), 1362–1376. doi: 10.3390/atmos6091362
23 Haensler, A., Saeed, F., & Jacob, D. (2013). Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Climatic Change, 121(2), 349–363. doi: 10.1007/s10584‐013‐0863‐8
24 Hagos, S., & Zhang, C. (2010). Diabatic heating, divergent circulation and moisture transport in the African monsoon system. Quarterly Journal of the Royal Meteorological Society, 136(S1), 411–425. doi: 10.1002/qj.538
25 Hart, N. C., Washington, R., & Maidment, R. I. (2019). Deep convection over Africa: Annual cycle, ENSO, and trends in the hotspots. Journal of Climate, 32(24), 8791–8811. doi: 10.1175/jcli‐d‐19‐0274.1
26 Hartman, A. T. (2020). Tracking mesoscale convective systems in central equatorial Africa. International Journal of Climatology, 41(1), 469–482. doi: 10.1002/joc.6632
27 Holloway, C. E., & Neelin, J. D. (2009). Moisture vertical structure, column water vapor, and tropical deep convection. Journal of the Atmospheric Sciences, 66(6), 1665–1683. doi: 10.1175/2008jas2806.1
28 Howard, E., & Washington, R. (2018). Characterizing the synoptic expression of the Angola Low. Journal of Climate, 31(17), 7147–7165. doi: 10.1175/jcli‐d‐18‐0017.1
29 Howard, E., & Washington, R. (2019). Drylines in southern Africa: Rediscovering the Congo Air Boundary. Journal of Climate, 32(23), 8223–8242. doi: 10.1175/jcli‐d‐19‐0437.1
30 Hua, W., Zhou, L., Chen, H., Nicholson, S. E., Raghavendra, A., & Jiang, Y. (2016). Possible causes of the central equatorial African long‐term drought. Environmental Research Letters, 11(12), 124002. doi: 10.1088/1748‐9326/11/12/124002
31 Jackson, B., Nicholson, S. E., & Klotter, D. (2009). Mesoscale convective systems over western equatorial Africa and their relationship to large‐scale circulation. Monthly Weather Review, 137(4), 1272–1294. doi: 10.1175/2008mwr2525.1
32 Kamsu‐Tamo, P. H., Janicot, S., Monkam, D., & Lenouo, A. (2014). Convection activity over the Guinean coast and central Africa during northern spring from synoptic to intra‐seasonal timescales. Climate Dynamics, 43(12), 3377–3401. doi: 10.1007/s00382‐014‐2111‐y
33 Khairoutdinov, M., & Randall, D. (2006). High‐resolution simulation of shallow‐to‐deep convection transition over land. Journal of the Atmospheric Sciences, 63(12), 3421–3436. doi: 10.1175/jas3810.1
34 Kuete, G., Mba, W. P., & Washington, R. (2019). African Easterly Jet South: Control, maintenance mechanisms and link with southern subtropical waves. Climate Dynamics, 54(3–4), 1539–1552. doi: 10.1007/s00382‐019‐05072‐w
35 Laing, A. G., Carbone, R. E., & Levizzani, V. (2011). Cycles and propagation of deep convection over equatorial Africa. Monthly Weather Review, 139(9), 2832–2853. doi: 10.1175/2011mwr3500.1
36 Lavaysse, C., Flamant, C., Janicot, S., Parker, D. J., Lafore, J., Sultan, B., & Pelon, J. (2009). Seasonal evolution of the West African heat low: A climatological perspective. Climate Dynamics, 33(2–3), 313–330. doi: 10.1007/s00382‐009‐0553‐4
37 Liebmann, B., & Marengo, J. (2001). Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. Journal of Climate, 14(22), 4308–4318. doi: 10.1175/1520‐0442(2001)0142.0.co;2
38 Liebmann, B., Bladé, I., Kiladis, G. N., Carvalho, L. M., Senay, G. B., Allured, D., et al. (2012). Seasonality of African precipitation from 1996 to 2009. Journal of Climate, 25(12), 4304–4322. doi: 10.1175/jcli‐d‐11‐00157.1
39 Liu, N., Liu, C., Chen, B., & Zipser, E. (2020). What are the favorable large‐scale environments for the highest‐flash‐rate thunderstorms on Earth? Journal of the Atmospheric Sciences, 77(5), 1583–1612. doi: 10.1175/jas‐d‐19‐0235.1
40 Longandjo, G. T., & Rouault, M. (2019). On the structure of the regional‐scale circulation over central Africa: Seasonal evolution, variability, and mechanisms. Journal of Climate, 33(1), 145–162. doi: 10.1175/jcli‐d‐19‐0176.1
41 Longandjo, G. T., & Rouault, M. What Control the Central Africa Rainfall Seasonality? Journal of Climate. Submitted
42 Mbienda, A. J., Guenang, G. M., Tanessong, R. S., & Sandjon, A. T. (2019). Potential effects of aerosols on the diurnal cycle of precipitation over Central Africa by RegCM4.4. SN Applied Sciences, 1(2). doi: 10.1007/s42452‐018‐0154‐0
43 McGregor, G. R., & Nieuwolt, S. (1998). Tropical climatology. 2nd ed., Wiley, Chichester, 339 pp.
44 Nesbitt, S. W., & Zipser, E. J. (2003). The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. Journal of Climate, 16(10), 1456–1475. doi: 10.1175/1520‐0442‐16.10.1456
45 Nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006). Storm morphology and rainfall characteristics of TRMM precipitation features. Monthly Weather Review, 134(10), 2702–2721. doi: 10.1175/mwr3200.1
46 Neupane, N. (2016). The Congo basin zonal overturning circulation. Advances in Atmospheric Sciences, 33(6), 767–782. doi: 10.1007/s00376‐015‐5190‐8
47 Nguyen, H., & Duvel, J. (2008). Synoptic wave perturbations and convective systems over equatorial Africa. Journal of Climate, 21(23), 6372–6388. doi: 10.1175/2008jcli2409.1
48 Nicholson, S. E. (2018). The ITCZ and the seasonal cycle over equatorial Africa. Bulletin of the American Meteorological Society, 99(2), 337–348. doi: 10.1175/bams‐d‐16‐0287.1
49 Nicholson, S. E. (2009). A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dynamics, 32(7–8), 1155–1171. doi: 10.1007/s00382‐008‐0514‐3
50 Nie, J., Boos, W. R., & Kuang, Z. (2010). Observational evaluation of a convective quasi‐equilibrium view of monsoons. Journal of Climate, 23(16), 4416–4428. doi: 10.1175/2010jcli3505.1
51 Pokam, W. M., Djiotang, L. A., & Mkankam, F. K. (2011). Atmospheric water vapor transport and recycling in equatorial central Africa through NCEP/NCAR reanalysis data. Climate Dynamics, 38(9–10), 1715–1729. doi: 10.1007/s00382‐011‐1242‐7
52 Pokam, W. M., Bain, C. L., Chadwick, R. S., Graham, R., Sonwa, D. J., & Kamga, F. M. (2014). Identification of processes driving low‐level westerlies in west equatorial Africa. Journal of Climate, 27(11), 4245–4262. doi: 10.1175/jcli‐d‐13‐00490.1
53 Raghavendra, A., Zhou, L., Jiang, Y., & Hua, W. (2018). Increasing extent and intensity of thunderstorms observed over the Congo Basin from 1982 to 2016. Atmospheric Research, 213, 17–26. doi: 10.1016/j.atmosres.2018.05.028
54 Redelsperger, J., Thorncroft, C. D., Diedhiou, A., Lebel, T., Parker, D. J., & Polcher, J. (2006). African monsoon multidisciplinary analysis: An international research project and field campaign. Bulletin of the American Meteorological Society, 87(12), 1739–1746. doi: 10.1175/bams‐87‐12‐1739
55 Salman, M., & Momha, A. B. (2009). Adaptive Water Management in the Lake Chad Basin: Addressing Current Challenges and Adapting to Future Needs. Seminar at World Water Week, Stockholm.
56 Sandjon, A. T., Nzeukou, A., & Tchawoua, C. (2012). Intraseasonal atmospheric variability and its interannual modulation in Central Africa. Meteorology and Atmospheric Physics, 117(3–4), 167–179. doi: 10.1007/s00703‐012‐0196‐6
57 Shekhar, R., & Boos, W. R. (2017). Weakening and shifting of the Saharan shallow meridional circulation during wet years of the West African monsoon. Journal of Climate, 30(18), 7399–7422. doi: 10.1175/jcli‐d‐16‐0696.1
58 Sinclaire, Z., Lenouo, A., Tchawoua, C., & Janicot, S. (2015). Synoptic Kelvin type perturbation waves over Congo basin over the period 1979–2010. Journal of Atmospheric and Solar‐Terrestrial Physics, 130–131, 43–56. doi: 10.1016/j.jastp.2015.04.015
59 Sonkoué, D., Monkam, D., Fotso‐Nguemo, T. C., Yepdo, Z. D., & Vondou, D. A. (2018). Evaluation and projected changes in daily rainfall characteristics over Central Africa based on a multi‐model ensemble mean of CMIP5 simulations. Theoretical and Applied Climatology, 137(3–4), 2167–2186. doi: 10.1007/s00704‐018‐2729‐5
60 Suzuki, T. (2010). Seasonal variation of the ITCZ and its characteristics over central Africa. Theoretical and Applied Climatology, 103(1–2), 39–60. doi: 10.1007/s00704‐010‐0276‐9
61 Taguela, T. N., Vondou, D. A., Moufouma‐Okia, W., Fotso‐Nguemo, T. C., Pokam, W. M., Tanessong, R. S., et al. (2020). CORDEX Multi‐RCM hindcast over central Africa: Evaluation within observational uncertainty. Journal of Geophysical Research: Atmospheres, 125(5). doi: 10.1029/2019jd031607
62 Tamoffo, A. T., Moufouma‐Okia, W., Dosio, A., James, R., Pokam, W. M., Vondou, D. A., et al. (2019). Process‐oriented assessment of RCA4 regional climate model projections over the Congo Basin under 1.50C and 20C global warming levels: influence of regional moisture fluxes. Climate Dynamics, 53, 1911–1935. https://doi.org/10.1007/s00382‐019‐04751‐y
63 Tamoffo, A. T., Dosio, A., Vondou, D. A., & Sonkoué, D. (2020). Process‐based analysis of the added value of dynamical downscaling over central Africa. Geophysical Research Letters, 47(17). doi: 10.1029/2020gl089702
64 Taylor, C. M., Fink, A. H., Klein, C., Parker, D. J., Guichard, F., Harris, P. P., & Knapp, K. R. (2018). Earlier seasonal onset of intense mesoscale convective systems in the Congo Basin since 1999. Geophysical Research Letters, 45(24). doi: 10.1029/2018gl080516
65 Tchotchou, L. A., & Kamga, F. M. (2010). Sensitivity of the simulated African monsoon of summers 1993 and 1999 to convective parameterization schemes in RegCM3. Theoretical and Applied Climatology, 100(1–2), 207–220. doi: 10.1007/s00704‐009‐0181‐2
66 Thorncroft, C. D., Nguyen, H., Zhang, C., & Peyrillé, P. (2011). Annual cycle of the West African monsoon: Regional circulations and associated water vapour transport. Quarterly Journal of the Royal Meteorological Society, 137(654), 129–147. doi: 10.1002/qj.728
67 Uccellini, L. W., & Johnson, D. R. (1979). The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Monthly Weather Review, 107(6), 682–703. doi: 10.1175/1520‐0493(1979)1072.0.co;2
68 Vondou, D. A., Nzeukou, A., Lenouo, A., & Kamga, F. M. (2010). Seasonal variations in the diurnal patterns of convection in Cameroon‐Nigeria and their neighboring areas. Atmospheric Science Letters, 11(4), 290–300. doi: 10.1002/asl.297
69 Vondou, D. A., Yepdo, Z. D., Steve, T. R., Alain, T. S., & Tchotchou, L. D. (2017). Diurnal cycle of rainfall over Central Africa simulated by RegCM. Modeling Earth Systems and Environment, 3(3), 1055–1064. doi: 10.1007/s40808‐017‐0352‐6
70 Vondou, D. A., & Haensler, A. (2017). Evaluation of simulations with the regional climate model REMO over Central Africa and the effect of increased spatial resolution. International Journal of Climatology, 37, 741–760. doi: 10.1002/joc.5035
71 Washington, R., James, R., Pearce, H., Pokam, W. M., & Moufouma‐Okia, W. (2013). Congo Basin rainfall climatology: Can we believe the climate models? Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 20120296. doi: 10.1098/rstb.2012.0296
72 Wu, M., Nikulin, G., Kjellström, E., Belušić, D., Jones, C., & Lindstedt, D. (2019). The impact of RCM formulation and resolution on simulated precipitation in Africa. Earth System Dynamics, 11(2), 377–394. doi: 10.5194/esd‐2019‐55
73 Zipser, E. J., Cecil, D. J., Liu, C., Nesbitt, S. W., & Yorty, D. P. (2006). Where are the most intense thunderstorms on Earth? Bulletin of the American Meteorological Society, 87(8), 1057–1072. doi: 10.1175/bams‐87‐8‐1057