Читать книгу Congo Basin Hydrology, Climate, and Biogeochemistry - Группа авторов - Страница 84

REFERENCES

Оглавление

1 Achard, F., Eva, H. D., Stibig, H.‐J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J.‐P. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297(5583), 999–1002. doi: 10.1126/science.1070656

2 Agutu, N., Awange, J., Ndehedehe, C., Kirimi, F., and Kuhn, M. (2019). GRACE‐derived groundwater changes over Greater Horn of Africa: temporal variability and the potential for irrigated agriculture. Science of The Total Environment, 693, 133467. doi: 10.1016/j.scitotenv.2019.07.273

3 Agutu, N., Awange, J., Zerihun, A., Ndehedehe, C., Kuhn, M., & Fukuda, Y. (2017). Assessing multi‐satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sensing of Environment, 194(0), 287–302. doi: 10.1016/j.rse.2017.03.041

4 Ahmed, M., & Wiese, D. N. (2019). Short‐term trends in Africa’s freshwater resources: Rates and drivers. Science of The Total Environment, 695, 133843. doi: 10.1016/j.scitotenv.2019.133843

5 Alsdorf, D., Beighley, E., Laraque, A., Lee, H., Tshimanga, R., O’Loughlin, F., et al. (2016). Opportunities for hydrologic research in the congo basin. Reviews of Geophysics, 54(2), 378–409. doi: 10.1002/2016RG000517

6 Alsdorf, D., Han, S.‐C., Bates, P., & Melack, J. (2010). Seasonal water storage on the amazon floodplain measured from satellites. Remote Sensing of Environment, 114(11), 2448–2456. doi: 10.1016/j.rse.2010.05.020

7 Anyah, R., Forootan, E., Awange, J., & Khaki, M. (2018). Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products. Science of The Total Environment, 635, 1405–1416. doi: 10.1016/j.scitotenv.2018.04.159

8 Bahaga, T. K., Fink, A. H., & Knippertz, P. (2019). Revisiting interannual to decadal teleconnections influencing seasonal rainfall in the Greater Horn of Africa during the 20th century. International Journal of Climatology, 39(5), 2765–2785. https://doi.org/10.1002/joc.5986

9 Barnett, T. P., & Preisendorfer, R. (1987). Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Monthly Weather Review, 115(9), 1825–1850. doi: 10.1175/1520‐0493(1987)115<1825:OALOMA>2.0.CO;2

10 Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two‐dimensional flood inundation modelling. Journal of Hydrology, 387(1), 33–45. doi: 10.1016/j.jhydrol.2010.03.027

11 Bazrafshan, J., Hejabi, S., & Rahimi, J. (2014). Drought monitoring using the multivariate standardized precipitation index (MSPI). Water Resources Management, 28, 1045–1060. doi: 10.1007/s11269‐014‐0533‐2

12 Becker, M., Papa, F., Frappart, F., Alsdorf, D., Calmant, S., da Silva, J. S., et al. (2018). Satellite‐based estimates of surface water dynamics in the Congo River Basin. International Journal of Applied Earth Observation and Geoinformation, 66, 196–209. https://doi.org/10.1016/j.jag.2017.11.015

13 Bell, J. P., Tompkins, A. M., Bouka‐Biona, C., & Sanda, I. S. (2015). A process‐based investigation into the impact of the Congo basin deforestation on surface climate. Journal of Geophysical Research: Atmospheres, 120(12), 5721–5739. doi: 10.1002/2014JD022586

14 Bretherton, C. S., Smith, C., & Wallace, J. M. (1992). An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 5(6), 541–560. doi: 10.1175/1520‐0442(1992)005<0541:AIOMFF>2.0.CO;2

15 Bunn, S. E., Thoms, M. C., Hamilton, S. K., & Capon, S. J. (2006). Flow variability in dryland rivers: boom, bust and the bits in between. River Research and Applications, 22(2), 179–186. doi: 10.1002/rra.904

16 Carr, A. B., Trigg, M. A., Tshimanga, R. M., Borman, D. J., & Smith, M. W. (2019). Greater water surface variability revealed by new congo river field data: Implications for satellite altimetry measurements of large rivers. Geophysical Research Letters, 46(14), 8093–8101. doi: 10.1029/2019GL083720

17 Cenacchi, N. (2014). Drought risk reduction in agriculture: A review of adaptive strategies in East Africa and the Indo‐Gangetic plain of South Asia. International Food Policy Research Institute (IFPRI), discussion Paper 1372. Retrieved from: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/128277. 23 September 2017.

18 Chen, Y., Wang, B., Pollino, C. A., Cuddy, S. M., Merrin, L. E., & Huang, C. (2014). Estimate of flood inundation and retention on wetlands using remote sensing and GIS. Ecohydrology, 7(5), 1412–1420. doi: 10.1002/eco.1467

19 Conway, D., Persechino, A., Ardoin‐Bardin, S., Hamandawana, H., Dieulin, C., & Mahé, G. (2009). Rainfall and water resources variability in Sub‐Saharan Africa during the twentieth century. Journal of Hydrometeorology, 10(1), 41–59. doi: 10.1175/2008JHM1004.1

20 Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273–297. https://doi.org/10.1007/BF00994018

21 Creese, A., Washington, R., & Jones, R. (2019). Climate change in the Congo Basin: processes related to wetting in the December–February dry season. Climate Dynamics, 53, 3583–3602. doi: 10.1007/s00382‐019‐04728‐x

22 Crowley, J. W., Mitrovica, J. X., Bailey, R. C., Tamisiea, M. E., & Davis, J. L. (2006). Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophysical Research Letters, 33(19), L19402. doi: 10.1029/2006GL027070

23 Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S., Gautier, E., et al. (2009). Spatio‐temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. Journal of Hydrology, 375(1–2), 90–102. doi: 10.1016/j.jhydrol.2008.12.012

24 Dyer, E. L. E., Jones, D. B. A., Nusbaumer, J., Li, H., Collins, O., Vettoretti, G., & Noone, D. (2017). Congo basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. Journal of Geophysical Research: Atmospheres, 122(13), 6882–6898. doi: 10.1002/2016JD026240

25 Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., et al. (2003). Implementation of noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmospheres, 108(D22). doi: 10.1029/2002JD003296

26 Epule, E. T., Peng, C., Lepage, L., & Chen, Z. (2014). The causes, effects and challenges of Sahelian droughts: a critical review. Regional Environmental Change, 14(1), 145–156. doi: 10.1007/s10113‐013‐0473‐z

27 FAO (2016). Climate change and food security: risks and responses. Food and Agricultural Organisation of the United Nations. Retrieved from http://www.fao.org/3/a‐i5188e.pdf. 20 September 2016.

28 Farnsworth, A., White, E., Williams, C. J., Black, E., & Kniveton, D. R. (2011). Understanding the Large Scale Driving Mechanisms of Rainfall Variability over Central Africa. In: Kniveton, D. R., &Williams, C. J. R. (Eds.), African Climate and Climate Change: Physical, Social and Political Perspectives, pp. 101–122. Springer Netherlands: Dordrecht. doi: 10.1007/978‐90‐481‐3842‐5_5.

29 Ferreira, V., Montecino, H., Ndehedehe, C., Heck, B., Gong, Z., Westerhaus, M., & de Freitas, S. (2018). Space‐based observations of crustal deflections for drought characterization in brazil. Science of The Total Environment, 644, 256–273. doi: 10.1016/j.scitotenv.2018.06.277

30 Freitas, A. (2013). Water as a stress factor in sub‐Saharan Africa. European Union Institute for Security Studies, pages 1–4. Retrieved from http://www.iss.europa.eu/uploads/media/Brief_12.pdf. 12 July 2017.

31 Gal, L., Grippa, M., Hiernaux, P., Pons, L., & Kergoat, L. (2017). The paradoxical evolution of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed (Mali) using the KINEROS‐2 model. Hydrology and Earth System Sciences, 21(9), 4591–4613. doi: 10.5194/hess‐21‐4591‐2017

32 Getirana, A., Jung, H. C., Hoek, J. V. D., & Ndehedehe, C. E. (2020). Hydropower dam operation strongly controls Lake Victoria’s freshwater storage variability. Science of The Total Environment, 726, 138343. https://doi.org/10.1016/j.scitotenv.2020.138343

33 Getirana, A., Kumar, S., Girotto, M., & Rodell, M. (2017a). Rivers and floodplains as key components of global terrestrial water storage variability. Geophysical Research Letters, 44(20), 10,359–10,368. doi: 10.1002/2017GL074684

34 Getirana, A., Peters‐Lidard, C., Rodell, M., & Bates, P. D. (2017b). Trade‐off between cost and accuracy in large‐scale surface water dynamic modeling. Water Resources Research, 53(6), 4942–4955. https://doi.org/10.1002/2017WR020519

35 Getirana, A. C. V., Boone, A., Yamazaki, D., Decharme, B., Papa, F., & Mognard, N. (2012). The hydrological modeling and analysis platform (HyMAP): Evaluation in the Amazon basin. Journal of Hydrometeorology, 13(6), 1641–1665. doi: 10.1175/JHM‐D‐12‐021.1

36 Gidley, S. L. (2009). Using high resolution satellite imagery to map aquatic macrophytes on multiple lakes in northern Indiana. Unpublished Msc thesis, Indiana University. Retrieved from https://core.ac.uk/download/pdf/46956355.pdf. 15 April 2019.

37 Haley, M. R. (2017). K‐fold cross validation performance comparisons of six naive portfolio selection rules: how naive can you be and still have successful out‐of‐sample portfolio performance? Annals of Finance, 13(3), 341–353. doi: 10.1007/s10436‐017‐0301‐4

38 Hall, J. W., Grey, D., Garrick, D., Fung, F., Brown, C., Dadson, S. J., & Sadoff, C. W. (2014). Coping with the curse of freshwater variability. Science, 346(6208), 429–430. doi: 10.1126/science.1257890

39 Hua, W., Zhou, L., Chen, H., Nicholson, S. E., Raghavendra, A., & Jiang, Y. (2016). Possible causes of the Central Equatorial African long‐term drought. Environmental Research Letters, 11(12), 124002. doi: 10.1088/1748‐9326/11/12/124002

40 Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., et al. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi‐global, multiyear, combined‐sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55. doi: 10.1175/JHM560.1

41 Ivits, E., Horion, S., Fensholt, R., & Cherlet, M. (2014). Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity. Global Change Biology, 20(2), 581–593. doi: 10.1111/gcb.12393

42 Jolliffe, I. T. (2002). Principal Component Analysis (second edition). Springer Series in Statistics. Springer, New York.

43 Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., et al. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954. https://doi.org/10.1038/nature09396

44 Keddy, P. A., Fraser, L. H., Solomeshch, A. I., Junk, W. J., Campbell, D. R., Arroyo, M. T. K., & Alho, C. J. R. (2009). Wet and wonderful: The world’s largest wetlands are conservation priorities. BioScience, 59(1), 39–51. doi: 10.1525/bio.2009.59.1.8

45 Kennard, M. J., Pusey, B. J., Olden, J. D., Mackay, S. J., Stein, J. L., & Marsh, N. (2010). Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology, 55(1), 171–193. doi: 10.1111/j.1365‐2427.2009.02307.x

46 Kiem, A. S., Johnson, F., Westra, S., van Dijk, A., Evans, J. P., O’Donnell, A., et al. (2016). Natural hazards in Australia: droughts. Climatic Change, 139(1), 37–54. doi: 10.1007/s10584‐016‐1798‐7

47 Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., et al. (2004). Regions of strong coupling between soil moisture and precipitation. Science, 305(5687), 1138–1140. doi: 10.1126/science.1100217

48 Kubiak‐Wójcicka, K., & Bąk, B. (2018). Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environmental Monitoring and Assessment, 190(11), 691. doi: 10.1007/s10661‐018‐7058‐8

49 Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C., Stocker, E., et al. (2000). The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of Applied Meteorology, 39(12), 1965–1982. doi: 10.1175/1520‐0450(2001)040<1965:TSOTTR>2.0.CO;2

50 Lee, H., Beighley, R. E., Alsdorf, D., Jung, H. C., Shum, C., Duan, J., et al. (2011). Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sensing of Environment, 115(12), 3530 – 3538. doi: 10.1016/j.rse.2011.08.015

51 Lee, H., Jung, H. C., Yuan, T., Beighley, R. E., & Duan, J. (2014). Controls of terrestrial water storage changes over the Central Congo Basin determined by integrating Palsar ScanSar, Envisat Altimetry, and Grace data. Remote Sensing of the Terrestrial Water Cycle, Geophysical Monograph, 206, 117–129. doi: 10.1002/9781118872086.ch7/pdf

52 Li, K., Coe, M., Ramankutty, N., & Jong, R. D. (2007). Modeling the hydrological impact of land‐use change in West Africa. Journal of Hydrology, 337(3–4), 258–268. doi: 10.1016/j.jhydrol.2007.01.038

53 Loon, A. V. (2013). On the propagation of drought. how climate and catchment characteristics influence hydrological drought development and recovery. PhD thesis, Wageningen University, Wageningen, NL, page 198 p. Retrieved from http://library.wur.nl/WebQuery/wurpubs/438510. 1 February 2018.

54 Luthcke, S. B., Sabaka, T., Loomis, B., Arendt, A., McCarthy, J., & Camp, J. (2013). Antarctica, Greenland and Gulf of Alaska land‐ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology, 59(216), 613–631. doi: 10.3189/2013JoG12J147

55 Mahé, G., & Olivry, J.‐C. (1999). Assessment of freshwater yields to the ocean along the intertropical atlantic coast of Africa (1951–1989). Comptes Rendus de l’Académie des Sciences ‐ Series IIA ‐ Earth and Planetary Science, 328(9), 621–626. doi: 10.1016/S1251‐8050(99)80159‐1

56 Mahé, G., & Paturel, J.‐E. (2009). 1896–2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers. Comptes Rendus Geoscience, 341(7), 538–546. doi: 10.1016/j.crte.2009.05.002

57 Malhi, Y., Adu‐Bredu, S., Asare, R. A., Lewis, S. L., & Mayaux, P. (2013). African rainforests: past, present and future. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 20120312. doi: 10.1098/rstb.2012.0312

58 Masih, I., Maskey, S., Mussá, F. E. F., & Trambauer, P. (2014). A review of droughts on the African continent: a geospatial and long‐term perspective. Hydrology and Earth System Sciences, 18(9), 3635–3649. doi: 10.5194/hess‐18‐3635‐2014

59 Materia, S., Gualdi, S., Navarra, A., & Terray, L. (2012). The effect of Congo River freshwater discharge on Eastern Equatorial Atlantic climate variability. Climate Dynamics, 39(9), 2109–2125. doi: 10.1007/s00382‐012‐1514‐x.

60 McKee, T. B., Doeskin, N. J., & Kieist, J. (1993). The relationship of drought frequency and duration to time scales. Conference on Applied Climatology, American Meteorological Society, Boston, Massachusetts, pp. 179–184. Retrieved from www.ccc.atmos.colostate.edu/relationshipofdroughtfrequency.pdf. Accessed 27 June 2014

61 Moore, P., &Williams, S. D. P. (2014). Integration of altimetry lake lavels and GRACE gravimetry over Africa: Inferences for terrestrial water storage change 2003–2011. Water Resources Research, 50, 9696–9720. doi: 10.1002/2014WR015506

62 Munzimi, Y. A., Hansen, M. C., Adusei, B., & Senay, G. B. (2015). Characterizing Congo basin rainfall and climate using tropical rainfall measuring mission (TRMM) satellite data and limited rain gauge ground observations. Journal of Applied Meteorology and Climatology, 54(3), 541–555. doi: 10.1175/JAMC‐D‐14‐0052.1.

63 Ndehedehe, C. E. (2019). The water resources of tropical West Africa: problems, progress and prospect. Acta Geophysica, 67(2), 621–649. https://doi.org/10.1007/s11600‐019‐00260‐y

64 Ndehedehe, C. E., Agutu, N., Ferreira, V. G., & Getirana, A. (2020a). Evolutionary drought patterns over the Sahel and their teleconnections with low frequency climate oscillations. Atmospheric Research, 233, 104700. doi: 10.1016/j.atmosres.2019.104700

65 Ndehedehe, C. E., Agutu, N. O., & Okwuashi, O. (2018a). Is terrestrial water storage a useful indicator in assessing the impacts of climate variability on crop yield in semi‐arid ecosystems? Ecological Indicators, 88C, 51–62. doi: 10.1016/j.ecolind.2018.01.026

66 Ndehedehe, C. E., Anyah, R. O., Alsdorf, D., Agutu, N. O., & Ferreira, V. G. (2019). Modelling the impacts of global multi‐scale climatic drivers on hydro‐climatic extremes (1901–2014) over the Congo basin. Science of The Total Environment, 651, 1569–1587. doi: 10.1016/j.scitotenv.2018.09.203

67 Ndehedehe, C., Awange, J., Agutu, N., Kuhn, M., & Heck, B. (2016). Understanding changes in terrestrial water storage over West Africa between 2002 and 2014. Advances in Water Resources, 88, 211–230. doi: 10.1016/j.advwatres.2015.12.009

68 Ndehedehe, C. E., Awange, J., Kuhn, M., Agutu, N., & Fukuda, Y. (2017a). Analysis of hydrological variability over the Volta river basin using in‐situ data and satellite observations. Journal of Hydrology: Regional Studies, 12, 88–110. doi: 10.1016/j.ejrh.2017.04.005

69 Ndehedehe, C. E., Awange, J., Kuhn, M., Agutu, N., & Fukuda, Y. (2017b). Climate teleconnections influence on West Africa’s terrestrial water storage. Hydrological Processes, 31(18), 3206–3224. doi: 10.1002/hyp.11237

70 Ndehedehe, C. E., Awange, J. L., Agutu, N. O., & Okwuashi, O. (2018b). Changes in hydro‐meteorological conditions over tropical West Africa (1980–2015) and links to global climate. Global and Planetary Change, 162, 321–341. doi: 10.1016/j.gloplacha.2018.01.020

71 Ndehedehe, C. E., Burford, M. A., Stewart‐Koster, B., & Bunn, S. E. (2020b). Satellite‐derived changes in floodplain productivity and freshwater habitats in northern Australia (1991–2019). Ecological Indicators, 114, 106320. doi: 10.1016/j.ecolind.2020.106320

72 Ndehedehe, C. E., Okwuashi, O., Ferreira, V. G., & Agutu, N. O. (2018c). Exploring evapotranspiration dynamics over Sub‐Sahara Africa (2000–2014). Environmental Monitoring and Assessment, 190(7), 400. doi: 10.1007/s10661‐018‐6780‐6

73 Ndehedehe, C. E., Stewart‐Koster, B., Burford, M. A., & Bunn, S. E. (2020c). Predicting hot spots of aquatic plant biomass in a large floodplain river catchment in the Australian wet‐dry tropics. Ecological Indicators, 117, 106616. doi: 10.1016/j.ecolind.2020.106616

74 Ngom, F., Tweed, S., Bader, J.‐C., Saos, J.‐L., Malou, R., Leduc, C., & Leblanc, M. (2016). Rapid evolution of water resources in the Senegal delta. Global and Planetary Change, 144, 34–47. doi: 10.1016/j.gloplacha.2016.07.002

75 Nicholson, S. E., & Dezfuli, A. K. (2013). The relationship of rainfall variability in western equatorial Africa to the tropical oceans and atmospheric circulation. Part I: The Boreal Spring. Journal of Climate, 26(1), 45–65. doi: 10.1175/Jcli‐D‐11‐00653

76 Nicholson, S. E., Funk, C., & Fink, A. H. (2018). Rainfall over the African continent from the 19th through the 21st century. Global and Planetary Change, 165, 114–127. doi: 10.1016/j.gloplacha.2017.12.014

77 Niu, G.‐Y., Yang, Z.‐L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multiparameterization options (Noah‐MP): 1. model description and evaluation with local‐scale measurements. Journal of Geophysical Research: Atmospheres, 116(D12). https://doi.org/10.1029/2010JD015139

78 Nkiaka, E., Nawaz, N. R., & Lovett, J. C. (2017). Using standardized indicators to analyse dry/wet conditions and their application for monitoring drought/floods: a study in the Logone catchment, Lake Chad basin. Hydrological Sciences Journal, 62(16), 2720–2736. doi: 10.1080/02626667.2017.1409427

79 Okewu, E., Misra, S., Sanz, L. F., Ayeni, F., Mbarika, V., & Damaševičius, R. (2019). Deep Neural Networks for curbing climate change‐induced farmers‐herdsmen clashes in a sustainable social inclusion initiative. Problems of Sustainable Development, 14(2), 143–155.

80 Okwuashi, O., & Ndehedehe, C. (2017). Tide modelling using support vector machine regression. Journal of Spatial Science, 62(1), 29–46. doi: 10.1080/14498596.2016.1215272

81 O’Loughlin, F., Trigg, M. A., Schumann, G. J.‐P., & Bates, P. D. (2013). Hydraulic characterization of the middle reach of the congo river. Water Resources Research, 49(8), 5059–5070. doi: 10.1002/wrcr.20398

82 Oslisly, R., White, L., Bentaleb, I., Favier, C., Fontugne, M., Gillet, J., & Sebag, D. (2013). Climatic and cultural changes in the West Congo Basin forests over the past 5000 years. Philosophical Transactions of The Royal Society.B.Biological Sciences, 368:10 p. doi: 10.1098/rstb.2012.0304

83 Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sensing of wetlands. Wetlands Ecology and Management, 10(5), 381–402. doi: 10.1023/A:1020908432489

84 Pokam, W. M., Bain, C. L., Chadwick, R. S., Graham, R., Sonwa, D. J., & Kamga, F. M. (2014). Identification of processes driving low‐level westerlies in West Equatorial Africa. Journal of Climate, 27(11), 4245–4262. doi: 10.1175/JCLI‐D‐13‐00490.1

85 Redelsperger, J.‐L., & Lebel, T. (2009). Surface processes and water cycle in West Africa, studied from the AMMA‐CATCH observing system. Journal of Hydrology, 375(1–2), 1–2. doi: 10.1016/j.jhydrol.2009.08.017

86 Reynolds, R. W., Rayne, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(3), 1609–1625. doi: 10.1175/1520‐0442(2002)0153C1609:AIISAS3E2.0.CO;2

87 Save, H., Bettadpur, S., & Tapley, B. D. (2016). High‐resolution CSR GRACE RL05 mascons. Journal of Geophysical Research: Solid Earth, 121(10), 7547–7569. doi: 10.1002/2016JB013007

88 Scanlon, B. R., Zhang, Z., Save, H., Wiese, D. N., Landerer, F. W., Long, D., et al. (2016). Global evaluation of new GRACE mascon products for hydrologic applications. Water Resources Research, 52(12), 9412–9429. doi: 10.1002/2016WR019494

89 Schroth, G., Läderach, P., Martinez‐Valle, A. I., Bunn, C., & Jassogn, L. (2016). Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Science of the Total Environment, 556, 231–241. doi: 10.1016/j.scitotenv.2016.03.024

90 Shiferaw, B., Tesfaye, K., Kassie, M., Abate, T., Prasanna, B., & Menkir, A. (2014). Managing vulnerability to drought and enhancing livelihood resilience in sub‐Saharan Africa: technological, institutional and policy options. Weather and Climate Extremes, 3(0), 67–79. doi: 10.1016/j.wace.2014.04.004

91 Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222. doi: 10.1023/B:STCO.0000035301.49549.88

92 Sorí, R., Nieto, R., Vicente‐Serrano, S. M., Drumond, A., & Gimeno, L. (2017). A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth System Dynamics, 8(3), 653–675. doi: 10.5194/esd‐8‐653‐2017

93 Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., & Vogt, J. (2014). World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology, 34(8), 2792–2804. doi: 10.1002/joc.3875

94 Tapley, B., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophysical Research Letters, 31, 1–4. doi: 10.1029/ 2004GL019920

95 Thomas, B. F., Famiglietti, J. S., Landerer, F. W., Wiese, D. N., Molotch, N. P., & Argus, D. F. (2017). GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought. Remote Sensing of Environment, 198(Supplement C), 384–392. doi: 10.1016/j.rse.2017.06.026

96 Tockner, K., Lorang, M. S., & Stanford, J. A. (2010). River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. River Research and Applications, 26(1), 76–86. doi: 10.1002/rra.1328

97 Tshimanga, R. M., & Hughes, D. A. (2014). Basin‐scale performance of a semi‐distributed rainfall‐runoff model for hydrological predictions and water resources assessment of large rivers: The Congo River. Water Resources Research, 50(2), 1174–1188. doi: 10.1002/2013WR014310

98 Van Loon, A. F., Kumar, R., & Mishra, V. (2017). Testing the use of standardised indices and GRACE satellite data to estimate the European 2015 groundwater drought in near‐real time. Hydrology and Earth System Sciences, 21(4), 1947–1971. doi: 10.5194/hess‐21‐1947‐2017

99 Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., et al. (2016). Drought in a human‐modified world: reframing drought definitions, understanding, and analysis approaches. Hydrology and Earth System Sciences, 20(9), 3631–3650. doi: 10.5194/hess‐20‐3631‐2016

100 Van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. A., Teuling, A. J., & Uijlenhoet, R. (2014). How climate seasonality modifies drought duration and deficit. Journal of Geophysical Research: Atmospheres, 119(8), 4640–4656. doi: 10.1002/2013JD020383

101 Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York, NY: Springer.

102 Verhegghen, A., Mayaux, P., de Wasseige, C., & Defourny, P. (2012). Mapping Congo Basin vegetation types from 300 m and 1 km multi‐sensor time series for carbon stocks and forest areas estimation. Biogeosciences, 9(12), 5061–5079. doi: 10.5194/bg‐9‐5061‐2012

103 Vicente‐Serrano, S. M., Beguería, S., & López‐Moreno, J. I. (2010a). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. doi: 10.1175/2009JCLI2909.1

104 Vicente‐Serrano, S. M., Beguería, S., López‐Moreno, J. I., Angulo, M., & El Kenawy, A. (2010b). A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the palmer drought severity index. Journal of Hydrometeorology, 11(4), 1033–1043. doi: 10.1175/2010JHM1224.1

105 Wada, Y., Bierkens, M. F. P., de Roo, A., Dirmeyer, P. A., Famiglietti, J. S., Hanasaki, N., et al. (2017). Human‐water interface in hydrological modelling: Current status and future directions. Hydrology and Earth System Sciences, 21(8), 4169–4193. doi: 10.5194/hess‐21‐4169‐2017

106 Washington, R., James, R., Pearce, H., Pokam, W. M., & Moufouma‐Okia, W. (2013). Congo Basin rainfall climatology: can we believe the climate models? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1625). doi: 10.1098/rstb.2012.0296

107 Watkins, M. M., Wiese, D. N., Yuan, D., Boening, C., & Landerer, F. W. (2015). Improved methods for observing earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research: Solid Earth, 120(4), 2648–2671. doi: 10.1002/2014JB011547

108 Wauters, M., & Vanhoucke, M. (2014). Support vector machine regression for project control forecasting. Automation in Construction, 47, 92–106. doi: 10.1016/j.autcon.2014.07.014.

109 Wiese, D. N., Landerer, F. W., & Watkins, M. M. (2016). Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resources Research, 52(9), 7490–7502. https://doi.org/10.1002/2016WR019344

110 Zhao, D., Jiang, H., Yang, T., Cai, Y., Xu, D., & An, S. (2012). Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds. Journal of Environmental Management, 95(1), 98–107. doi: 10.1016/j.jenvman.2011.10.007

111 Zhou, L., Tian, Y., Myneni, R. B., Ciais, P., Saatchi, S., Liu, Y. Y., et al. (2014). Widespread decline of congo rainforest greenness in the past decade. Nature, 509(7498), 86–90. doi: 10.1038/nature13265

Congo Basin Hydrology, Climate, and Biogeochemistry

Подняться наверх