Читать книгу Handbook of Intelligent Computing and Optimization for Sustainable Development - Группа авторов - Страница 121

5.2.3 Channel Estimation/Signal Detection

Оглавление

The application of a neural network (NN) for channel estimation is influenced by the channels which are challenging to describe. This problem may ensue from a provision that inhibit the possession of CSI at the receiver (CSIR) or an unavailability of a well-known channel models. For instance, in MIMO systems with low-resolution analog-to-digital converters (ADCs), consistent CSIR cannot be achieved due to the abrasive quantization instituted by the ADC [22]. In molecular communication systems, the fundamental channel models are indefinite [40]. Therefore, both systems offer themselves to NN-based detectors. Jeon et al. [40] draw a contrast in speech recognition and found that this a domain in which DL algorithms have done extremely good. Speech recognition and digital communication both begin with a signal which is generally sent over a channel to some receiver. This channel can be a wireless, acoustic, or chemical and a receiver can be a microphone, cell phone, or chemical sensor. The receiver tends to detect the original transmitted signal. This evaluation emphasizes the ability of DL algorithms in signal detection over undetermined channels.

In wireless detection, we initially estimate the parameters of a channel over which the signal is being transmitted. These estimates of the CSI are needed for detection at the receiver. Conventional algorithms to estimate CSI, such as minimum mean square error (MMSE) or maximum a posteriori probability (MAP) estimation, necessitate an analytical model of the channel, but the blend of channel distortion and hardware imperfections can be challenging to model systematically. Authors in [41] employed a DL-based method to estimate the carrier frequency offset (CFO) and timing estimates to empower detection of single carrier phase-shift keyed signals.

Handbook of Intelligent Computing and Optimization for Sustainable Development

Подняться наверх