Читать книгу Fractures in the Horse - Группа авторов - Страница 164
References
Оглавление1 1 Müller, M.E., Koch, P., Nazarian, S., and Schatzker, J. (1990). Principles of the classification of fractures. In: The Comprehensive Classification of Fractures of Long Bones (eds. M.E. Müller, U. Heim, S. Nazarian, et al.), 4–7. Berlin: Springer.
2 2 Marsell, R. and Einhorn, T.A. (2011). The biology of fracture healing. Injury 42: 551–555.
3 3 Shapiro, F. (1988). Cortical bone repair. The relationship of the lacunar–canalicular system and intercellular gap junctions to the repair process. J. Bone Joint Surg. Am. 70: 1067–1081.
4 4 Rahn, B.A. (2002). Bone healing: histologic and physiologic concepts. In: Bone in Clinical Orthopedics (ed. G.E. Fackelman), 287–326. Stuttgart, NY: Thieme.
5 5 Glatt, V., Evans, C.H., and Tetsworth, K. (2017). A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front. Physiol. 7: 678.
6 6 Rupp, M., Biehl, C., Budak, M. et al. (2018). Diaphyseal long bone nonunions – types, aetiology, economics, and treatment recommendations. Int. Orthop. 42: 247–258.
7 7 Włodarski, K.H. (1990). Properties and origin of osteoblasts. Clin. Orthop. Relat. Res. 252: 276–293.
8 8 Shirley, D., Marsh, D., Jordan, G. et al. (2005). Systemic recruitment of osteoblastic cells in fracture healing. J. Orthop. Res. 23: 1013–1021.
9 9 Walters, G., Pountos, I., and Giannoudis, P.V. (2018). The cytokines and micro‐environment of fracture haematoma: current evidence. J. Tissue Eng. Regen. Med. 12: e1662–e 1677.
10 10 Sathyendra, V. and Darowish, M. (2013). Basic science of bone healing. Hand Clin. 29: 473–481.
11 11 Aro, H.T. and Chao, E.Y. (1993). Bone‐healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression. Clin. Orthop. Relat. Res. 293: 8–17.
12 12 Kwong, F.N.K. and Harris, M.B. (2008). Recent developments in the biology of fracture repair. J. Am. Acad. Orthop. Surg. 16: 619–625.
13 13 Stewart, H.L. and Kawcak, C.E. (2018). The importance of subchondral bone in the pathophysiology of osteoarthritis. Front. Vet. Sci. 5: 178.
14 14 Smith, M.R., Kawcak, C.E., and McIlwraith, C.W. (2016). Science in brief: report on the Havemeyer foundation workshop on subchondral bone problems in the equine athlete. Equine Vet. J. 48: 6–8.
15 15 Loi, F., Córdova, L.A., Pajarinen, J. et al. (2016). Inflammation, fracture and bone repair. Bone 86: 119–130.
16 16 Lopez, M.J. and Markel, M.D. (2012). Bone biology and fracture healing. In: Equine Surgery, 4e (eds. J.A. Auer and J.A. Stick), 1025–1040. St Louis, Missouri: Elsevier.
17 17 Gerstenfeld, L.C., Cullinane, D.M., Barnes, G.L. et al. (2003). Fracture healing as a post‐natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88: 873–884.
18 18 Claes, L., Eckert‐Hübner, K., and Augat, P. (2002). The effect of mechanical stability on local vasularization and tissue differentiation in callus healing. J. Orthop. Res. 20: 1099–1105.
19 19 Miron, R.J. and Bosshardt, D.D. (2016). OsteoMacs: key players around bone biomaterials. Biomaterials 82: 1–19.
20 20 Ono, T. and Takayanagi, H. (2017). Osteoimmunology in bone fracture healing. Curr. Osteoporos. Rep. 15: 367–375.
21 21 Mountziaris, P.M., Spicer, P.P., Kasper, F.K., and Mikos, A.G. (2011). Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng. Part B Rev. 17: 393–402.
22 22 Takayanagi, H. (2005). Inflammatory bone destruction and osteoimmunology. J. Periodontal Res. 40: 287–293.
23 23 Giannoudis, P.V., Hak, D., Sanders, D. et al. (2015). Inflammation, bone healing, and anti‐inflammatory drugs. J. Orthop. Trauma 29: 6–9.
24 24 Kular, J., Tickner, J., Chim, S.M., and Xu, J. (2012). An overview of the regulation of bone remodelling at the cellular level. Clin. Biochem. 45: 863–873.
25 25 Pountos, I., Panteli, M., Panagiotopoulos, E. et al. (2014). Can we enhance fracture vascularity: what is the evidence? Injury 45: 49–57.
26 26 Ciampolini, J. and Harding, K.G. (2000). Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? Postgrad. Med. J. 76: 479–483.
27 27 Roux, W. (1881). The struggle of the parts in the organism; A contribution to the completion of the mechanical expediency teaching. Leipzig, Germany: Engelmann; urn: nbn: de: kobv: b4–200905195064.
28 28 Wolff, J. (1892). The Law of Transformation of Bones. Verlag von August Hirschwald: Berlin, Germany.
29 29 Pauwels, F. (1960). Eine neue Theorie über den Einflußmechanischer Reize auf die Differenzierung der Stützgewebe. Z. Anat. Entwicklungsgesch. 121: 478–515.
30 30 Glowacki, J. (1998). Angiogenesis in fracture repair. Clin. Orthop. Relat. Res. 355: 82–89.
31 31 Claes, L.E. and Heigele, C.A. (1999). Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32: 255–266.
32 32 Chao, E.Y., Aro, H.T., Lewallen, D.G., and Kelly, P.J. (1989). The effect of rigidity on fracture healing in external fixation. Clin. Orthop. Relat. Res. 241: 24–35.
33 33 Acklin, Y.P., Bircher, A., Morgenstern, M. et al. (2018). Benefits of hardware removal after plating. Injury 49: 91–95.
34 34 Alves, C.J., Neto, E., Sousa, D.M. et al. (2016). Fracture pain – traveling unknown pathways. Bone 85: 107–114.
35 35 Schütze, R., Rees, C., Smith, A. et al. (2018). How can we best reduce pain catastrophizing in adults with chronic noncancer pain? A systematic review and meta‐analysis. J. Pain 19: 233–256.
36 36 Morgenstern, M., Kühl, R., Eckardt, H. et al. (2018). Diagnostic challenges and future perspectives in fracture‐related infection. Injury 49: 83–90.
37 37 Matcuk, G.R., Mahanty, S.R., Skalski, M.R. et al. (2016). Stress fractures: pathophysiology, clinical presentation, imaging features, and treatment options. Emerg. Radiol. 23: 365–375.
38 38 Markel, M.D., Snyder, J.R., Hornof, W.J., and Meagher, D.M. (1987). Nuclear scintigraphic evaluation of third metacarpal and metatarsal bone fractures in three horses. J. Am. Vet. Med. Assoc. 191: 75–77.
39 39 McGilvray, K.C., Unal, E., Troyer, K.L. et al. (2015). Implantable microelectromechanical sensors for diagnostic monitoring and post‐surgical prediction of bone fracture healing. J. Orthop. Res. 33: 1439–1446.
40 40 Tull, T.M. and Bramlage, L.R. (2011). Racing prognosis after cumulative stress‐induced injury of the distal portion of the third metacarpal and third metatarsal bones in Thoroughbred racehorses: 55 cases (2000–2009). J. Am. Vet. Med. Assoc. 238: 1316–1322.
41 41 Rossignol, F., Vitte, A., and Boening, J. (2014). Use of a modified transfixation pin cast for treatment of comminuted phalangeal fractures in horses. Vet. Surg. 43: 66–72.
42 42 Watkins, JP. (2019). Use of transfixation devices for fracture management in the horse. Presented at: AOVET North America, Advanced Techniques in Equine Fracture Management; Columbus, OH.
43 43 Clark, D., Nakamura, M., Miclau, T., Marcucio, R. (2017 Dec 16). Effects of aging on fracture healing. Curr. Osteoporos. Rep. [Internet]. [Cited 2018 Jan 30]; 15(6): 601–608. Available from: http://www.ncbi.nlm.mih.gov/pubmed/26143915.
44 44 Marquez‐Lara, A., Hutchinson, I. D., Nuñez, F., Smith, T. L., Miller, A. N. (2016 Mar 15). Nonsteroidal anti‐inflammatory drugs and bone‐healing. JBJS Rev. [Internet]. [cited 2018 Feb 15]; 4(3): e41–414. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27500434.
45 45 Rohde, C., Anderson, D.E., Bertone, A.L., and Weisbrode, S.E. (2000). Effects of phenylbutazone on bone activity and formation in horses. Am. J. Vet. Res. 61: 537–543.
46 46 Marquez‐Lara, A., Hutchinson, I.D., Nuñez, F. et al. (2016). Nonsteroidal anti‐inflammatory drugs and bone‐healing. JBJS Rev. 4: 41–414.
47 47 Gallaher, H.M., Butler, J.R., Wills, R.W. et al. (2019). Effects of short‐ and long‐term administration of nonsteroidal anti‐inflammatory drugs on osteotomy healing in dogs. Vet. Surg. 48: 1318–1329.
48 48 Kawcak, C. E. (2014). Update on the use of bisphosphates in equine practice. Sunrise Session: Educational Partners Dechra presented at; Am Assoc Equine Pract; Salt Lake City, UT.
49 49 Ott, S.M. (2005). Long‐term safety of bisphosphonates. J. Clin. Endocrinol. Metab. 90: 1897–1899.
50 50 Dehghani, f., Conrad, A., Kohl, A. et al. (2004). Clodronate inhibits the secretion of proinflammatory cytokines and NO by isolated microglial cells and reduces the number of proliferating glial cells in excitotoxically injured organotypic hippocampal slice cultures. Exp. Neurol. 189: 241–251.
51 51 Monkonnen, J., Simila, J., and Roger, M.J. (1998). Effects of tiludronate and ibandronate on the secretion of proinflammatory cytokines and nitric oxide from macrophages in vitro. Life Sci. 62: 95–102.
52 52 McLellan, J. (2017). Science‐in‐brief: bisphosphonates use in the racehorse: safe or unsafe. Equine Vet. J. 49: 404–407.
53 53 Mashiba, T., Turner, C.H., Hirano, T. et al. (2001). Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagies. Bone 28: 524–531.
54 54 Kidd, L.J., Cowling, N.R., Wu, A.C. et al. (2001). Bisphosphonate treatment delays stress fracture remodelling in the rat ulna. J. Orthop. Res. 29: 1827–1833.
55 55 Milgrom, C., Fiestone, A., Novack, V. et al. (2004). The effect of prophylactic treatment with risedronate on stress fracture incidence among infantry recruits. Bone 35: 418–424.
56 56 Sloan, A.V., Martin, J.R., Li, S., and Li, J. (2010). Parathyroid hormone and bisphosphonate have opposite effects on stress fracture repair. Bone 47: 235–240.
57 57 Hegde, V., Jo, J. E., Andreopoulou, P., Lane, J. M. (2016 Mar 29). Effect of osteoporosis medications on fracture healing. Osteoporos Int [Internet]. [cited 2018 Feb 16]; 27(3): 861–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26419471.
58 58 Kates, S. L., Ackert‐Bicknell, C. L. (2016 Jan). How do bisphosphonates affect fracture healing? Injury [Internet]. [cited 2018 Jan 30]; 47: S65–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26768295.
59 59 Pontos, I., Georgouli, T., Bird, H., Kontakis, G., Giannoudis, P. V. (2001 Nov 9). The effect of antibiotics on bone healing: current evidence. Expert Opin. Drug Saf. [Internet]. [cited 2018 Jan 30]; 10(6): 935–945. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21824037.
60 60 Tang, L., Zhao, C., Xiong, Y., Wang, A. (2010 Jun 24). Preparation, antibacterial properties and biocompatibility studies on vancomycin‐poli (D,L)‐lactic loaded plates. Int. Orthop. [Internet]. [cited 2018 Jan 30]; 34(5): 755–759. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19466408.
61 61 Rathbone, C. R., Cross, J. D., Brown, K. B., Murray, C. K., Wenke, J. C. (2011 Jul). Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J. Orthop. Res. [Internet]. [cited 2018 Jan 30]; 29(7): 1070–1074. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21567453.
62 62 Desai, B. M. (2007 Apr). Osteobiologics. Am. J. Orthop. (Belle Mead NJ) [Internet]. [cited 2018 Feb 17]; 36 (4 Suppl): 8–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17547352.
63 63 Roffi, A., Di Matteo, B., Krishnakumar, G. S., Kon, E., Filardo, G. (2017 Feb 26). Platelet‐rich plasma for the treatment of bone defects: from pre‐clinical rational to evidence in the clinical practice. A systematic review. Int. Orthop. [Internet]. [cited 2018 Jan 30]; 41(2): 221–37. Available from: http://link.springer.com/10.1007/s00264‐016‐3342‐9.
64 64 Di Matteo, B., Filardo, G., Kon, E., Marcacci, M. (2015 Apr 17). Platelet‐rich plasma: evidence for the treatment of patellar and Achilles tendinopathy—a systematic review. Musculoskelet. Surg. [Internet]. [cited 2018 Jan 30]; 99(1): 1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25323041.
65 65 Tiedeman, J. J., Connolly, J. F., Strates, B. S., Lippiello, L. (1991 Jul). Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix. An experimental study in dogs. Clin. Orthop. Relat. Res. [Internet]. [cited 2018 Jan 30]; (268): 294–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2060222.
66 66 Gómez‐Barrena, E., Rosset, P., Müller, I., Giordano, R., Bunu, C., Layrolle, P. et al. (2011 Jun). Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J. Cell Mol. Med. [Internet]. [cited 2018 Jan 30]; 15(6): 1266–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21251219.
67 67 Healey, J. H., Zimmerman, P. A., McDonnell, J. M., Lane, J. M. (1990 Jul). Percutaneous bone marrow grafting of delayed union and nonunion in cancer patients. Clin. Orthop. Relat. Res. [Internet]. [cited 2018 Jan 30]; 256: 280–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2364614.
68 68 Im, G‐I. (2017). Clinical use of stem cells in orthopaedics. Eur. Cell. Mater. [Internet]. [cited 2018 Jan 30]; 33: 183–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28266690.
69 69 Seo, J., Tsuzuki, N., Haneda, S., Yamada, K., Furuoka, H., Tabata, Y. et al. (2014 Mar 18). Osteoinductivity of gelatin/β‐tricalcium phosphate sponges loaded with different concentrations of mesenchymal stem cells and bone morphogenetic protein‐2 in an equine bone defect model. Vet. Res. Commun. [Internet]. [cited 2018 Feb 17]; 38(1): 73–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24442646.
70 70 McDuffee, L. A., Pack, L., Lores, M., Wright, G. M., Esparza‐Gonzalez, B., Masaoud, E. (2012 Oct). Osteoprogenitor cell therapy in an equine fracture model. Vet. Surg. [Internet]. [cited 2018 Feb 17]; 41(7): 773–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22804243.
71 71 Milner, P. I., Clegg, P. D., Stewart, M. C. (2011 Aug). Stem cell–based therapies for bone repair. Vet. Clin. North Am. Equine Pract. [Internet]. [cited 2018 Feb 17]; 27(2): 299–314. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21872760.
72 72 James, A. W., LaChaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X. et al. (2016 Aug). A review of the clinical side effects of bone morphogenetic protein‐2. Tissue Eng. Part B Rev. [Internet]. [cited 2018 Feb 17]; 22(4): 284–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26857241.
73 73 Southwood, L. L., Kawcak, C. E., Hidaka, C., Mcilwraith, C. W., Werpy, N., Macleay, J. et al. (2012 Feb). Evaluation of direct in vivo gene transfer in an equine metacarpal IV ostectomy model using an adenoviral vector encoding the bone morphogenetic protein‐2 and protein‐7 gene. Vet. Surg. [Internet]. [cited 2018 Feb 17]; 41(3): 345–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22308976.
74 74 Weisrock, K. U., Winkelsett, S., Martin‐Rosset, W., Forssmann, W‐G., Parvizi, N., Coenen, M. et al. (2011 Nov). Long‐term effects of intermittent equine parathyroid hormone fragment (ePTH‐1‐37) administration on bone metabolism in healthy horses. Vet. J. [Internet]. [cited 2018 Jan 30]; 190(2): e130–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21310635.
75 75 Fuerst, A., Derungs, S., von Rechenberg, B., Auer, J. A., Schense, J., Watson, J. (2007 Mar). Use of a parathyroid hormone peptide (PTH 1?34)‐enriched fibrin hydrogel for the treatment of a subchondral cystic lesion in the proximal interphalangeal joint of a warmblood filly. J. Vet. Med. Ser. A [Internet]. [cited 2018 Jan 30]; 54(2): 107–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17305975.
76 76 Wang, W., Yeung, K. W. K. (2017 Dec 1). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. [Internet]. [cited 2018 Jan 30]; 2(4): 224–47. Available from: https://www.sciencedirect.com/science/article/pii/S2452199X17300464.
77 77 Bodo, G., Hangody, L., Modis, L., Hurtig, M. (2004 Nov). Autologous osteochondral grafting (Mosaic Arthroplasty) for treatment of subchondral cystic lesions in the equine stifle and fetlock joints. Vet. Surg. [Internet]. [cited 2018 Jan 30];33(6):588–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15659013.
78 78 Kawcak, C. E., Trotter, G. W., Powers, B. E., Park, R. D., Turner, A. S. Comparison of bone healing by demineralized bone matrix and autogenous cancellous bone in horses. Vet. Surg. [Internet]. [cited 2018 Feb 17];29(3):218–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10871223.
79 79 Ortved, K. F., Nixon, A. J. (2016 Feb). Cell‐based cartilage repair strategies in the horse. Vet. J. [Internet]. [cited 2018 Feb 17];208:1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26702950.
80 80 Richardson, D. W. (2008 Dec). Complications of orthopaedic surgery in horses. Vet. Clin. North Am. Equine Pract. [Internet]. [cited 2018 Feb 17];24(3):591–610, viii. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0749073908000655.
81 81 Daish, C., Blanchard, R., Fox, K. et al. (2018). The application of pulsed electromagnetic fields (PEMFs) for bone fracture repair: past and perspective findings. Ann. Biomed. Eng. 46: 525–542.
82 82 Aleem, I.S., Aleem, I., Evaniew, N. et al. (2016). Efficacy of electrical stimulators for bone healing: a meta‐analysis of randomized sham‐controlled trials. Sci. Rep. 6: 31724.
83 83 Mollon, B., da Silva, V., Busse, J.W. et al. (2008). Electrical stimulation for long‐bone fracture‐healing: a meta‐analysis of randomized controlled trials. J. Bone Joint Surg. Am. 90 (11): 2322–2330.
84 84 Siska, P.A., Gruen, G.S., and Pape, H.C. (2008). External adjuncts to enhance fracture healing: what is the role of ultrasound? Injury 39 (10): 1095–1105.
85 85 Claes, L. and Willie, B. (2007). The enhancement of bone regeneration by ultrasound. Prog. Biophys. Mol. Biol. 93 (1–3): 384–398.
86 86 Busse, J.W., Kaur, J., Mollon, B. et al. (2009). Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials. Br. Med. J. 338: b351.
87 87 Ebrahim, S., Mollon, B., Bance, S. et al. (2014). Low‐intensity pulsed ultrasonography versus electrical stimulation for fracture healing: a systematic review and network meta‐analysis. Can. J. Surg. 57 (3): E105–E118.
88 88 Griffin, X.L., Parsons, N., Costa, M.L., and Metcalfe, D. (2014). Ultrasound and shockwave therapy for acute fractures in adults. Cochrane Database Syst. Rev. 6: CD008579.
89 89 McClure, S.R., Miles, K., VanSickle, D., and South, T. (2010). The effect of variable waveform low‐intensity pulsed ultrasound in a fourth metacarpal osteotomy gap model in horses. Ultrasound Med. Biol. 36: 1298–1305.
90 90 Schaden, W., Mittermayr, R., Haffner, N. et al. (2015). Extracorporeal shockwave therapy (ESWT) – first choice treatment of fracture non‐unions? Int. J. Surg. 24 (Pt B): 179–183.
91 91 Frisbie, D.D., Kawcak, C.E., and McIlwraith, C.W. (2009). Evaluation of the effect of extracorporeal shock wave treatment on experimentally induced osteoarthritis in middle carpal joints of horses. Am. J. Vet. Res. 70: 449–454.
92 92 Kawcak, C.E., Frisbie, D.D., and McIlwraith, C.W. (2011). Effects of extracorporeal shock wave therapy and polysulfated glycosaminoglycan treatment on subchondral bone, serum biomarkers, and synovial fluid biomarkers in horses with induced osteoarthritis. Am. J. Vet. Res. 72: 772–779.
93 93 Dahlberg, J.A., McClure, S.R., Evans, R.B., and Reinertson, E.L. (2006). Force platform evaluation of lameness severity following extracorporeal shock wave therapy in horses with unilateral forelimb lameness. J. Am. Vet. Med. Assoc. 229: 100–103.
94 94 McClure, S.R., Van Sickle, D., and White, M.R. (2004). Effects of extracorporeal shock wave therapy on bone. Vet. Surg. 33: 40–48.
95 95 Da Costa Gómez, T.M., Radtke, C.L., Kalscheur, V.L. et al. (2004). Effect of focused and radial extracorporeal shock wave therapy on equine bone microdamage. Vet. Surg. 33: 49–55.
96 96 Wang, J., Leung, K., Chow, S., and Cheung, W. (2017). The effect of whole body vibration on fracture healing – a systematic review. Eur. Cell. Mater. 34: 108–127.
97 97 Schlachter, C. and Lewis, C. (2016). Electrophysical therapies for the equine athlete. Vet. Clin. North Am. Equine Pract. 32: 127–147.
98 98 Barilaro, G., Francesco Masala, I., Parracchini, R. et al. (2017). The role of hyperbaric oxygen therapy in orthopedics and rheumatological diseases. Isr. Med. Assoc. J. 19 (7): 429–434.