Читать книгу Clinical Obesity in Adults and Children - Группа авторов - Страница 89
References
Оглавление1 1. Stunkard AJ, Sorensen TI, Hanis C, et al. An adoption study of human obesity. N Engl J Med 1986; 314(4):193–8.
2 2. Kopelman PG. Obesity as a medical problem. Nature 2000; 404(6778):635–43.
3 3. Rice T, Perusse L, Bouchard C, Rao DC. Familial aggregation of body mass index and subcutaneous fat measures in the longitudinal Quebec family study. Genet Epidemiol 1999; 16(3):316–34.
4 4. Sorensen TI, Price RA, Stunkard AJ, Schulsinger F. Genetics of obesity in adult adoptees and their biological siblings. BMJ 1989; 298(6666):87–90.
5 5. Stunkard AJ, Foch TT, Hrubec Z. A twin study of human obesity. JAMA 1986; 256(1):51–4.
6 6. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 1997; 27(4):325–51.
7 7. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE. The body‐mass index of twins who have been reared apart. N Engl J Med 1990; 322(21):1483–7.
8 8. Price RA, Gottesman II. Body fat in identical twins reared apart: roles for genes and environment. Behav Genet 1991; 21(1):1–7.
9 9. Allison DB, Kaprio J, Korkeila M, Koskenvuo M, Neale MC, Hayakawa K. The heritability of body mass index among an international sample of monozygotic twins reared apart. Int J Obes 1996; 20(6):501–6.
10 10. Perusse L, Tremblay A, Leblanc C, et al. Familial resemblance in energy intake: contribution of genetic and environmental factors. Am J Clin Nutr 1988; 47(4):629–35.
11 11. Bouchard C, Tremblay A. Genetic effects in human energy expenditure components. Int J Obes 1990; 14(suppl 1):49–55; discussion 55–8.
12 12. Samaras K, Kelly PJ, Chiano MN, Spector TD, Campbell LV. Genetic and environmental influences on total‐body and central abdominal fat: the effect of physical activity in female twins. Ann Intern Med 1999; 130(11):873–82.
13 13. Butler M. Prader–Willi syndrome: current understanding of cause and diagnosis. Am J Med Genet 1990; 35(3):319–32.
14 14. Cummings DE, Clement K, Purnell JQ, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med 2002; 8(7):643–4.
15 15. Swaab DF, Purba JS, Hofman MA. Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader–Willi syndrome: a study of five cases. J Clin Endocrinol Metab 1995; 80(2):573–9.
16 16. Sahoo T, del Gaudio D, German JR, et al. Prader–Willi phenotype caused by paternal deficiency for the HBII‐85 C/D box small nucleolar RNA cluster. Nat Genet 2008; 40(6):719–21.
17 17. Weinstein LS, Chen M, Liu J. Gs(alpha) mutations and imprinting defects in human disease. Ann N Y Acad Sci 2002; 968:173–97.
18 18. Mykytyn K, Sheffield VC. Establishing a connection between cilia and Bardet–Biedl syndrome. Trends Mol Med 2004; 10(3):106–9.
19 19. Mohr B. Hypertrophie der hypophysis cerebri und dadurchbedingter druck auf die hirngrundflache, insbesndere auf die Schnerven, das chiasma deselben und den linkseitigen. Hirnschenkel Wschr Ges Heilk 1840; 6:565–71.
20 20. Babinski MJ. Tumeur du corps pituitaire sans acromegalie et avec de developpement des organes genitaux. Rev Neurol 1900; 8:531–3.
21 21. Frolich A. Ein fall von tumor der hypophysis cerebri ohne akromegalie. Wien Klin Rund 1901; 15:883–6.
22 22. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec 1940; 78:149–72.
23 23. Leibel RL, Chung WK, Chua SC Jr. The molecular genetics of rodent single gene obesities. J Biol Chem 1997; 272(51):31937–40.
24 24. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372(6505):425–32.
25 25. Flier JS. Clinical review 94: what’s in a name? In search of leptin’s physiologic role. J Clin Endocrinol Metab 1998; 83(5):1407–13.
26 26. Schwartz MW, Woods SC, Porte D Jr., Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404(6778):661–71.
27 27. Huszar D, Lynch CA, Fairchild‐Huntress V, et al. Targeted disruption of the melanocortin‐4 receptor results in obesity in mice. Cell 1997; 88(1):131–41.
28 28. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early‐onset obesity in humans. Nature 1997; 387(6636):903–8.
29 29. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998; 18(3):213–5.
30 30. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 2002; 110(8):1093–103.
31 31. Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341(12):879–84.
32 32. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin‐mediated defects. J Clin Endocrinol Metab 1999; 84(10):3686–95.
33 33. Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC. Leptin regulates striatal regions and human eating behavior. Science 2007; 317(5843):1355.
34 34. Trayhurn P, Thurlby PL, James WPT. Thermogenic defect in preobese ob/ob mice. Nature 1977; 266:60–2.
35 35. Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL. Low dose leptin administration reverses effects of sustained weight‐reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab 2002; 87(5):2391.
36 36. Harris M, Aschkenasi C, Elias CF, et al. Transcriptional regulation of the thyrotropin‐releasing hormone gene by leptin and melanocortin signaling. J Clin Invest 2001; 107(1):111–20.
37 37. Mantzoros CS, Ozata M, Negrao AB, et al. Synchronicity of frequently sampled thyrotropin (TSH) and leptin concentrations in healthy adults and leptin‐deficient subjects: evidence for possible partial TSH regulation by leptin in humans. J Clin Endocrinol Metab 2001; 86(7):3284–91.
38 38. Farooqi IS, Wangensteen T, Collins S, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 2007; 356(3):237–47.
39 39. Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction [see comments]. Nature 1998; 392(6674):398–401.
40 40. Lahlou N, Clement K, Carel JC, et al. Soluble leptin receptor in serum of subjects with complete resistance to leptin: relation to fat mass. Diabetes 2000; 49(8):1347–52.
41 41. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early‐onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998; 19(2):155–7.
42 42. Challis BG, Pritchard LE, Creemers JW, et al. A missense mutation disrupting a dibasic prohormone processing site in pro‐opiomelanocortin (POMC) increases susceptibility to early‐onset obesity through a novel molecular mechanism. Hum Mol Genet 2002; 11(17):1997–2004.
43 43. Jackson RS, Creemers JW, Ohagi S, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene [see comments]. Nat Genet 1997; 16(3):303–6.
44 44. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348(12):1085–95.
45 45. Yeo GS, Lank EJ, Farooqi IS, Keogh J, Challis BG, O’Rahilly S. Mutations in the human melanocortin‐4 receptor gene associated with severe familial obesity disrupts receptor function through multiple molecular mechanisms. Hum Mol Genet 2003; 12(5):561–74.
46 46. van der Klaauw AA, Croizier S, Mendes de Oliveira E, et al. Human Semaphorin 3 variants link melanocortin circuit development and energy balance. Cell 2019; 176(4):729–42 e18.
47 47. Yang Y, van der Klaauw AA, Zhu L, et al. Steroid receptor coactivator‐1 modulates the function of Pomc neurons and energy homeostasis. Nat Commun 2019; 10(1):1718.
48 48. Marenne G, Hendricks AE, Perdikari A, et al. Exome sequencing identifies genes and gene sets contributing to severe childhood obesity, linking PHIP variants to repressed POMC transcription. Cell Metab 2020; 31(6):1107–19 e12.
49 49. Webster E, Cho MT, Alexander N, et al. De novo PHIP‐predicted deleterious variants are associated with developmental delay, intellectual disability, obesity, and dysmorphic features. Cold Spring Harb Mol Case Stud 2016; 2(6):a001172.
50 50. Ramachandrappa S, Raimondo A, Cali AM, et al. Rare variants in single‐minded 1 (SIM1) are associated with severe obesity. J Clin Invest 2013; 123(7):3042–50.
51 51. Bonnefond A, Raimondo A, Stutzmann F, et al. Loss‐of‐function mutations in SIM1 contribute to obesity and Prader–Willi‐like features. J Clin Invest 2013; 123(7):3037–41.
52 52. Kublaoui BM, Gemelli T, Tolson KP, Wang Y, Zinn AR. Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol Endocrinol 2008; 22(7):1723–34.
53 53. Bochukova EG, Lawler K, Croizier S, et al. A transcriptomic signature of the hypothalamic response to fasting and BDNF deficiency in Prader–Willi syndrome. Cell Rep 2018; 22(13):3401–8.
54 54. Moir L, Bochukova EG, Dumbell R, et al. Disruption of the homeodomain transcription factor orthopedia homeobox (Otp) is associated with obesity and anxiety. Mol Metab 2017; 6(11):1419–28.
55 55. Gray J, Yeo GS, Cox JJ, et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain‐derived neurotrophic factor (BDNF) gene. Diabetes 2006; 55(12):3366–71.
56 56. Sonoyama T, Stadler LKJ, Zhu M, et al. Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate with neurobehavioural abnormalities. Sci Rep 2020; 10(1):9028.
57 57. Bochukova EG, Huang N, Keogh J, et al. Large, rare chromosomal deletions associated with severe early‐onset obesity. Nature 2010; 463(7281):666–70.
58 58. Doche ME, Bochukova EG, Su HW, Pearce LR, Keogh JM, Henning E, et al. Human SH2B1 mutations are associated with maladaptive behaviors and obesity. J Clin Invest 2012; 122(12):4732–6.
59 59. Flores A, Argetsinger LS, Stadler LKJ, et al. Crucial role of the SH2B1 PH domain for the control of energy balance. Diabetes 2019; 68(11):2049–62.
60 60. Jiang L, Su H, Keogh JM, et al. Neural deletion of Sh2b1 results in brain growth retardation and reactive aggression. FASEB J 2018;32(4):1830–40.