Читать книгу Genome Editing in Drug Discovery - Группа авторов - Страница 29
References
Оглавление1 Agudelo, D., Duringer, A., Bozoyan, L. et al. (2017). Marker‐free coselection for CRISPR‐driven genome editing in human cells. Nat. Methods 14: 615–620.
2 Amabile, A., Migliara, A., Capasso, P. et al. (2016). Inheritable silencing of endogenous genes by hit‐and‐run targeted epigenetic editing. Cell 167 (219–232): e14.
3 Anzalone, A.V., Koblan, L.W., and Liu, D.R. (2020). Genome editing with CRISPR‐Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38: 824–844.
4 Baker, O., Gupta, A., Obst, M. et al. (2016). RAC‐tagging: recombineering and Cas9‐assisted targeting for protein tagging and conditional analyses. Sci. Rep. 6: 25529.
5 Barrangou, R., Fremaux, C., Deveau, H. et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.
6 Bhargava, J., Shashikant, C.S., Carr, J.L. et al. (1999). Direct cloning of genomic DNA by recombinogenic targeting method using a yeast‐bacterial shuttle vector, pClasper. Genomics 62: 285–288.
7 Bibikova, M., Carroll, D., Segal, D.J. et al. (2001). Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell Biol. 21: 289–297.
8 Bibikova, M., Golic, M., Golic, K.G., and Carroll, D. (2002). Targeted chromosomal cleavage and mutagenesis in drosophila using zinc‐finger nucleases. Genetics 161: 1169–1175.
9 Boch, J., Scholze, H., Schornack, S. et al. (2009). Breaking the code of DNA binding specificity of TAL‐Type III effectors. Science 326: 1509–1512.
10 Buerstedde, J.M. and Takeda, S. (1991). Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67: 179–188.
11 Carbery, I.D., Ji, D., Harrington, A. et al. (2010). Targeted genome modification in mice using zinc‐finger nucleases. Genetics 186: 451–459.
12 Carreras, A., Pane, L.S., Nitsch, R. et al. (2019). in vivo genome and base editing of a human PCSK9 knock‐in hypercholesterolemic mouse model. BMC Biol. 17: 4.
13 Cermak, T., Doyle, E.L., Christian, M. et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector‐based constructs for DNA targeting. Nucleic Acids Res. 39: e82.
14 Chadwick, A.C., Wang, X., and Musunuru, K. (2017). in vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin Type 9) as a therapeutic alternative to genome editing. Arterioscler. Thromb. Vasc. Biol. 37: 1741–1747.
15 Chen, F., Pruett‐Miller, S.M., Huang, Y. et al. (2011). High‐frequency genome editing using ssDNA oligonucleotides with zinc‐finger nucleases. Nat. Methods 8: 753–755.
16 Cole‐Strauss, A., Yoon, K., Xiang, Y. et al. (1996). Correction of the mutation responsible for sickle cell anemia by an RNA‐DNA oligonucleotide. Science 273: 1386–1389.
17 Cristea, S., Freyvert, Y., Santiago, Y. et al. (2013). in vivo cleavage of transgene donors promotes nuclease‐mediated targeted integration. Biotechnol. Bioeng. 110: 871–880.
18 Ding, Q., Lee, Y.K., Schaefer, E.A. et al. (2013). A TALEN genome‐editing system for generating human stem cell‐based disease models. Cell Stem Cell 12: 238–251.
19 Doyon, Y., Mccammon, J.M., Miller, J.C. et al. (2008). Heritable targeted gene disruption in zebrafish using designed zinc‐finger nucleases. Nat. Biotechnol. 26: 702–708.
20 Garneau, J.E., Dupuis, M.E., Villion, M. et al. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71.
21 Gaudelli, N.M., Komor, A.C., Rees, H.A. et al. (2017). Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551: 464–471.
22 Geurts, A.M., Cost, G.J., Freyvert, Y. et al. (2009). Knockout rats via embryo microinjection of zinc‐finger nucleases. Science 325: 433.
23 Guilinger, J.P., Thompson, D.B., and Liu, D.R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32: 577–582.
24 Hanna, R.E. and Doench, J.G. (2020). Design and analysis of CRISPR‐Cas experiments. Nat. Biotechnol. 38: 813–823.
25 Hess, G.T., Fresard, L., Han, K. et al. (2016). Directed evolution using dCas9‐targeted somatic hypermutation in mammalian cells. Nat. Methods 13: 1036–1042.
26 Hinnen, A., Hicks, J.B., and Fink, G.R. (1978). Transformation of yeast. Proc. Natl. Acad. Sci. U. S. A. 75: 1929–1933.
27 Hirata, R., Chamberlain, J., Dong, R., and Russell, D.W. (2002). Targeted transgene insertion into human chromosomes by adeno‐associated virus vectors. Nat. Biotechnol. 20: 735–738.
28 Ishino, Y., Shinagawa, H., Makino, K. et al. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in escherichia coli, and identification of the gene product. J. Bacteriol. 169: 5429–5433.
29 Jiang, W., Bikard, D., Cox, D. et al. (2013). RNA‐guided editing of bacterial genomes using CRISPR‐Cas systems. Nat. Biotechnol. 31: 233–239.
30 Jiang, W., Zhao, X., Gabrieli, T. et al. (2015). Cas9‐assisted targeting of CHromosome segments CATCH enables one‐step targeted cloning of large gene clusters. Nat. Commun. 6: 8101.
31 Kim, Y.G., Cha, J., and Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U. S. A. 93: 1156–1160.
32 Kim, H.J., Lee, H.J., Kim, H. et al. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19: 1279–1288.
33 Klompe, S.E., Vo, P.L.H., Halpin‐Healy, T.S., and Sternberg, S.H. (2019). Transposon‐encoded CRISPR‐Cas systems direct RNA‐guided DNA integration. Nature 571: 219–225.
34 Komor, A.C., Kim, Y.B., Packer, M.S. et al. (2016). Programmable editing of a target base in genomic DNA without double‐stranded DNA cleavage. Nature 533: 420–424.
35 Li, S., Akrap, N., Cerboni, S. et al. (2021). Universal toxin‐based selection for precise genome engineering in human cells. Nat. Commun. 12: 497.
36 Maeder, M.L., Thibodeau‐Beganny, S., Osiak, A. et al. (2008). Rapid “open‐source” engineering of customized zinc‐finger nucleases for highly efficient gene modification. Mol. Cell 31: 294–301.
37 Maier, D.A., Brennan, A.L., Jiang, S. et al. (2013). Efficient clinical scale gene modification via zinc finger nuclease‐targeted disruption of the HIV co‐receptor CCR5. Hum. Gene Ther. 24: 245–258.
38 Makarova, K.S., Grishin, N.V., Shabalina, S.A. et al. (2006). A putative RNA‐interference‐based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1: 7.
39 Maresca, M., Erler, A., Fu, J. et al. (2010). Single‐stranded heteroduplex intermediates in lambda red homologous recombination. BMC Mol. Biol. 11: 54.
40 Maresca, M., Lin, V.G., Guo, N., and Yang, Y. (2013). Obligate ligation‐gated recombination (ObLiGaRe): custom‐designed nuclease‐mediated targeted integration through nonhomologous end joining. Genome Res. 23: 539–546.
41 Marraffini, L.A. and Sontheimer, E.J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843–1845.
42 Miller, J., Mclachlan, A.D., and Klug, A. (1985). Repetitive zinc‐binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4: 1609–1614.
43 Moscou, M.J. and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.
44 Murphy, K.C. (1998). Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180: 2063–2071.
45 Pavletich, N.P. and Pabo, C.O. (1991). Zinc finger‐DNA recognition: crystal structure of a Zif268‐DNA complex at 2.1 A. Science 252: 809–817.
46 Perez, E.E., Wang, J., Miller, J.C. et al. (2008). Establishment of HIV‐1 resistance in CD4+ T cells by genome editing using zinc‐finger nucleases. Nat. Biotechnol. 26: 808–816.
47 Porteus, M.H. and Baltimore, D. (2003). Chimeric nucleases stimulate gene targeting in human cells. Science 300: 763.
48 Reyon, D., Tsai, S.Q., Khayter, C. et al. (2012). FLASH assembly of TALENs for high‐throughput genome editing. Nat. Biotechnol. 30: 460–465.
49 Richardson, C.D., Ray, G.J., Dewitt, M.A. et al. (2016). Enhancing homology‐directed genome editing by catalytically active and inactive CRISPR‐Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34: 339–344.
50 Sakamoto, K.M., Kim, K.B., Kumagai, A. et al. (2001). Protacs: chimeric molecules that target proteins to the Skp1‐Cullin‐F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. U. S. A. 98: 8554–8559.
51 Sakuma, T., Nakade, S., Sakane, Y. et al. (2016). MMEJ‐assisted gene knock‐in using TALENs and CRISPR‐Cas9 with the PITCh systems. Nat. Protoc. 11: 118–133.
52 Santiago, Y., Chan, E., Liu, P.Q. et al. (2008). Targeted gene knockout in mammalian cells by using engineered zinc‐finger nucleases. Proc. Natl. Acad. Sci. U. S. A. 105: 5809–5814.
53 Sarov, M., Schneider, S., Pozniakovski, A. et al. (2006). A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3: 839–844.
54 Scherer, S. and Davis, R.W. (1979). Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl. Acad. Sci. U. S. A. 76: 4951–4955.
55 Shalem, O., Sanjana, N.E., Hartenian, E. et al. (2014). Genome‐scale CRISPR‐Cas9 knockout screening in human cells. Science 343: 84–87.
56 Si, T., Chao, R., Min, Y. et al. (2017). Automated multiplex genome‐scale engineering in yeast. Nat. Commun. 8: 15187.
57 Skarnes, W.C., Rosen, B., West, A.P. et al. (2011). A conditional knockout resource for the genome‐wide study of mouse gene function. Nature 474: 337–342.
58 Smanski, M.J., Zhou, H., Claesen, J. et al. (2016). Synthetic biology to access and expand nature's chemical diversity. Nat. Rev. Microbiol. 14: 135–149.
59 Strathern, J.N., Klar, A.J., Hicks, J.B. et al. (1982). Homothallic switching of yeast mating type cassettes is initiated by a double‐stranded cut in the MAT locus. Cell 31: 183–192.
60 Strecker, J., Ladha, A., Makarova, K.S. et al. (2020). Response to Comment on “RNA‐guided DNA insertion with CRISPR‐associated transposases”. Science 368: eabb2920.
61 Su, T., Liu, F., Gu, P. et al. (2016). A CRISPR‐Cas9 assisted non‐homologous end‐joining strategy for one‐step engineering of bacterial genome. Sci. Rep. 6: 37895.
62 Suzuki, K., Tsunekawa, Y., Hernandez‐Benitez, R. et al. (2016). in vivo genome editing via CRISPR/Cas9 mediated homology‐independent targeted integration. Nature 540: 144–149.
63 Szostak, J.W., Orr‐Weaver, T.L., Rothstein, R.J., and Stahl, F.W. (1983). The double‐strand‐break repair model for recombination. Cell 33: 25–35.
64 Thomas, K.R., Folger, K.R., and Capecchi, M.R. (1986). High frequency targeting of genes to specific sites in the mammalian genome. Cell 44: 419–428.
65 Tsai, S.Q., Wyvekens, N., Khayter, C. et al. (2014). Dimeric CRISPR RNA‐guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32: 569–576.
66 Urnov, F.D., Miller, J.C., Lee, Y.L. et al. (2005). Highly efficient endogenous human gene correction using designed zinc‐finger nucleases. Nature 435: 646–651.
67 Valenzuela, D.M., Murphy, A.J., Frendewey, D. et al. (2003). High‐throughput engineering of the mouse genome coupled with high‐resolution expression analysis. Nat. Biotechnol. 21: 652–659.
68 Wang, H.H., Isaacs, F.J., Carr, P.A. et al. (2009). Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894–898.
69 Webber, B.R., Lonetree, C.L., Kluesner, M.G. et al. (2019). Highly efficient multiplex human T cell engineering without double‐strand breaks using Cas9 base. Nat. Commun. 10: 5222.
70 Yang, Y. and Seed, B. (2003). Site‐specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat. Biotechnol. 21: 447–451.
71 Yin, J., Zhu, H., Xia, L. et al. (2015). A new recombineering system for Photorhabdus and Xenorhabdus. Nucleic Acids Res. 43: e36.
72 Zhang, Y., Buchholz, F., Muyrers, J.P., and Stewart, A.F. (1998). A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20: 123–128.