Читать книгу Computational Statistics in Data Science - Группа авторов - Страница 113

References

Оглавление

1 1 World Economic Forum (2019) How Much Data is Generated Each Day? Visual Capitalist, https://www.visualcapitalist.com/how‐much‐data‐is‐generated‐each‐day.

2 2 Huynh, V. and Phung, D. (2017) Streaming clustering with Bayesian nonparametric models. Neurocomputing, 258, 52–62. doi: 10.1016/j.neucom.2017.02.078.

3 3 Ray, I., Adaikkalavan, R., Xie, X., and Gamble, R. (2015) Stream Processing with Secure Information Flow Constraints. 29th IFIP Annual Conference on Data and Applications Security and Privacy. Fairfax, USA, pp. 311–329. doi: 10.1007/978‐3‐319‐20810‐7_22.

4 4 Sibai, R.E., Chabchoub, Y., Demerjian, J. et al. (2016) Sampling Algorithms in Data Stream Environment. 2016 International Conference on Digital Economy Carthage. IEEE, Tunisia, pp. 29–36. doi: 10.1109/ICDEC.2016.7563142.

5 5 Youn, J., Shim, J., and Lee, S.G. (2018) Efficient data stream clustering with sliding windows based on locality sensitive hashing. IEEE Access, 6, 63757–63776. doi: 10.1109/ACCESS.2018.2877138.

6 6 Das, S., Beheraa, R.K., Kumar, M., and Rath, S.K. (2018) Real‐time sentiment analysis of twitter streaming data for stock prediction. Procedia Comput. Sci., 132, 956–964.

7 7 Wang, J., Zhu, R., and Liu, S. (2018) A differentially private unscented Kalman filter for streaming data in IoT. IEEE Access, 6 (1), 6487–6495. doi: 10.1109/ACCESS.2018.2797159.

8 8 Kolchinsky, I. and Schuster, A. (2019) Real‐Time Multi‐Pattern Detection Over Event Streams. Proceedings of the 2019 International Conference on Management of Data, Amsterdam Netherlands: New York, NY, USA: ACM, pp. 589–606. doi: 10.1145/3299869.3319869.

9 9 Tozi, C. (2017) Dummy's Guide to Batch vs Streaming. Retrieved from Trillium Software, https://www.precisely.com/blog/big‐data/big‐data‐101‐batch‐stream‐processing.

10 10 Kolajo, T., Daramola, O., and Adebiyi, A. (2019) Big data stream analysis: a systematic literature review. J. Big Data, 6, 47.

11 11 Kusumakumari, V., Sherigar, D., Chandran, R., and Patil, N. (2017) Frequent pattern mining on stream data using Hadoop CanTree‐GTree. Procedia Comput. Sci., 115, 266–273.

12 12 Giustozzia, F., Sauniera, J., and Zanni‐Merk, C. (2019) Abnormal situations interpretation in industry 4.0 using stream reasoning. Procedia Comput. Sci., 159, 620–629.

13 13 Liu, R., Li, Q., Li, F. et al. (2014) Big Data Architecture for IT Incident Management. Proceedings of IEEE international conference on service operations and logistics, and informatics. Qingdao, China, pp. 424–429.

14 14 Sakr, S. (2013) An Introduction to Infosphere Streams: A Platform for Analyzing Big Data in Motion, IBM, https://www.ibm.com/developerworks/library/bd‐streamsintro/index.html.

15 15 Inoubli, W., Aridhi, S., Mezni, H. et al. (2018) An experimental survey on big data frameworks. Future Gener. Comp. System, 86, 546–564. doi: 10.1016/j.future.2018.04.032.

16 16 International Business Machine (2019) Stream Computing Platforms, Applications and Analytics, https://researcher.watson.ibm.com/researcher/view_group.php?id=2531.

17 17 Vidyasankar, K. (2017) On continuous queries in stream processing. Procedia Comput. Sci., 109C, 640–647.

18 18 Joseph, S., Jasmin, E.A., and Chandran, S. (2015) Stream computing: opportunities and challenges in smart grid. Procedia Tech., 21, 49–53.

19 19 Wozniak, M., Ksieniewicz, P., Cyganek, B. et al. (2016) Active learning classification of drifted streaming data. Procedia Comput. Sci., 80, 1724–1733.

20 20 Kim, T. and Park, C.H. (2020) Anomaly pattern detection for streaming data. Expert Syst. Appl., 149, 113252. doi: 10.1016/j.eswa.2020.113252.

21 21 Sethi, T.S. and Kantardzic, M. (2018) Handling adversarial concept drift in streaming data. Expert Syst. Appl., 97, 18–40.

22 22 Toor, A.A., Usman, M., Younas, F. et al. (2020) Mining massive e‐health data streams for IoMT enabled healthcare systems. Sensors, 20 (7), 2131. doi: 10.3390/s20072131.

23 23 Shan, J., Luo, J., Ni, G. et al. (2016) CVS: fast cardinality estimation for large‐scale data streams over sliding windows. Neurocomputing, 194, 107–116.

24 24 Liu, W., Wang, Z., Liu, X. et al. (2017) A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11–26.

25 25 Priya, S. and Uthra, R.A. (2020) Comprehensive analysis for class imbalance data with concept drift using ensemble based classification. J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652‐020‐01934‐y.

26 26 Zhou, L., Pan, S., Wang, J., and Vasilakos, A.V. (2017) Machine learning on big data: opportunities and challenges. Neurocomputing, 237, 350–361. doi: 10.1016/j.neucom.2017.01.026.

27 27 O'Donovan, P., Leahy, K., Bruton, K., and O'Sullivan, D.T.J. (2015) An industrial big data pipeline for data‐driven analytics maintenance applications in large‐scale smart manufacturing facilities. J. Big Data, 2, 25. doi: 10.1186s40537‐015‐0034‐z.

28 28 Zaharia, M., Das, T., Li, H. et al. (2013) Discretized Streams: Fault‐Tolerant Streaming Computation at Scale. Proceedings of the 24th ACM Symposium on Operating System Principles (SOSP 2013), Farmington: ACM Press, pp. 423–438.

29 29 Jayasekara, S., Harwood, A., and Karunasekera, S. (2020) A utilization model for optimization of checkpoint intervals in distributed stream processing systems. Futur. Gener. Comput. Syst., 110, 68–79. doi: 10.1016/j.future.2020.04.019.

30 30 Chong, D. and Shi, H. (2015) Big data analytics: a literature review. J. Manag. Anal., 2 (3), 175–201.

31 31 Qian, Z., He, Y., Su, C. et al. (2013) TimeStream: Reliable Stream Computation in the Cloud. Proceedings of the 8th ACM European Conference on Computer Systems. ACM, Prague, pp. 1–14. doi: 10.1145/2465351.2465353.

32 32 Shi, P., Cui, Y., Xu, K. et al. (2019) Data consistency theory and case study for scientific big data. Information, 10, 137. doi: 10.3390/info10040137.

33 33 Santipantakis, G., Kotis, K., and Vouros, G.A. (2017) OBDAIR: ontology‐based distributed framework for accessing, integrating and reasoning with data in disparate data sources. Expert Syst. Appl., 90, 464–483.

34 34 Cortes, R., Bonnaire, X., Marin, O., and Sens, P. (2015) Stream processing of healthcare sensor data: studying user traces to identify challenges from a big data perspective. Procedia Comput. Sci., 52, 1004–1009.

35 35 D'Argenio, V. (2018) The high‐throughput analyses era: are we ready for the data struggle. High Throughput, 7 (1), 8. doi: 10.3390/ht7010008.

36 36 Qiu, Y. and Ma, M. (2018) Secure group mobility support for 6LoWPAN networks. IEEE Internet Things J., 5 (2), 1131–1141.

37 37 Wanga, J., Luo, J., Liu, X. et al. (2019) Improved kalman filter based differentially private streaming data release in cognitive computing. Futur. Gener. Comput. Syst., 98, 541–549.

38 38 Denham, B., Pears, R., and Naeem, A.M. (2020) Enhancing random projection with independent and cumulative additive noise for privacy‐preserving data stream mining. Expert Syst. Appl., 152, 113380. doi: 10.1016/j.eswa.2020.113380.

39 39 Hariri, R.H., Fredericks, E.M., and Bowers, K.M. (2019) Uncertainty in big data analytics: survey, opportunities, and challenges. J. Big Data, 6, 44. doi: 10.1186/s40537‐019‐0206‐3.

40 40 Millman, N. (2014) Analytics for Business. Computerworld, https://www.computerworld.com/article/24758 40/bigdata/8‐considerations‐when‐selecting‐big‐data‐technology.html.

41 41 Brook, C. (2014) Enterprise NoSQL for Dummies, John Wiley & Sons, Hoboken.

42 42 Shanahan, J.G. and Dai, L. (2015) Large Scale Distributed Data Science using Apache Spark. Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, pp. 2323–2324. doi: 10.1145/2783258.2789993.

43 43 Sharma, S. (2016) Expanded cloud plumes hiding big data ecosystem. Futur. Gener. Comput. Syst., 59, 63–92.

44 44 Meng, X., Bradley, J., Yavuz, B. et al. (2016) Mllib: machine learning in apache spark. J. Mach. Learn. Res., 17 (1), 1235–1241.

45 45 Mazumder, S. (2016) Big data application in engineering and science, in Big Data Concepts, Theories, and Applications (eds S. Yu and S. Guo), Springer, Cham, pp. 29–128. doi: 10.1007/978‐3‐319‐27763‐9_2.

46 46 Liao, X., Gao, Z., Ji, W., and Wang, Y. (2016) An Enforcement of Real‐Time Scheduling in Spark Streaming. Sixth IEEE International Green Computing Conference and Sustainable Computing Conference (IGSC). IEEE, Las Vegas, pp. 1–6. doi: 10.1109/IGCC.2015.7393730.

47 47 Jayanthi, D. and Sumathi, G. (2016) A Framework for Real‐Time Streaming Analytics Using Machine Learning Approach. Proceedings of the National Conference on Communication and Informatics, Sriperumbudur, India, pp. 85–90.

48 48 Agha, G. (1986) Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Cambridge.

49 49 Ananthanarayanan, R., Basker, V., Das, S. et al. (2013). Photon: Fault‐Tolerant and Scalable Joining of Continuous Data Streams. Proceedings of 2013 ACM SIGMOD International Conference on Management of Data. ACM, New York, pp. 577–588. doi: 10.1145/2463676.2465272.

50 50 Apache Software Foundation (2017) Apache Aurora: System Overview, http://aurora.apache.org/documentation/latest/getting‐started/overview.

51 51 Yang, W., DaSilva, A., and Picard, M.L. (2015) Computing data quality indicators on big data streams using a CEP, in 2015 IEEE International Workshop on Computational Intelligence for Multimedia Understanding, IEEE, Prague, pp. 1–5.

52 52 Morales, F.G. (2013) SAMOA: A Platform for Mining Big Data Streams. Proceedings of the 22nd International Conference on World Wide Web. ACM, Rio de Janeiro, pp. 777–778.

53 53 Ren, X., Khrouf, H., Kazi‐Aoul, Z. et al. (2018) On Measuring Performances of C‐SPARQL and CQELS, Kobe, Japan https://hal‐upec‐upem.archives‐ouvertes.fr/hal‐01740520.

54 54 Keeney, J., Fallon, L., Tai, W., and O'Sullivan, D. (2015) Towards Composite Semantic Reasoning for Real‐Time Network Management Data Enrichment. Proceedings of the 2015 IEEE 11th International Conference on Network and Service Management (CNSM), Barcelona. pp. 246–250. doi: 10.1109/CNSM.2015.7367365.

55 55 Gao, F., Ali, M.I., Cury, E., and Mileo, A. (2017) Automated discovery and integration of semantic urban data streams: the ACEIS middleware. Futur. Gener. Comput. Syst., 76, 561–581.

56 56 Toll, W. (2014) Top 45 Big Data Tool for Developers, https://blog.profitbricks.com/top‐45‐big‐data‐tools‐for‐developers.

57 57 Baciu, G., Li, C., Wang, Y., and Zhang, X. (2015) Cloudet: a cloud‐driven visual cognition for large streaming data. Int. J. Cognitive Inform. Nat. Intel., 10 (1), 12–31. doi: 10.4018/IJCINI.2016010102.

58 58 Chen, X.J. and Ke, J. (2015) Fast Processing of Conversion Time Data Flow in Cloud Computing via Weighted FP‐Tree Mining Algorithms. Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conference on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conference on Scalable Computing and Communications and Its Associated Workshops (UIC‐ATC‐ScalCom), Beijing, China, pp. 386–391.

59 59 Chen, X., Chen, H., Zhang, N. et al. (2015) Large‐scale real‐time semantic processing framework for internet of things. Int. J. Distrib. Sens. Net., 11 (10), 365–372. doi: 10.1155/2015/365372.

60 60 Kropivnitskaya, Y., Qin, J., Tiampo, K.F., and Bauer, M.A. (2015) A pipelining implementation for high resolution seismic hazard maps production. Procedia Comput. Sci., 51, 1473–1482.

61 61 Birjali, M., Beni‐Hssane, A., and Erritali, M. (2017) Analyzing social media through big data using infosphere biginsights and apache flume. Procedia Comput. Sci., 113, 280–285. doi: 10.1016/j.procs.2017.08.299.

62 62 Warner, J (2019) 5 Streaming Analytics Platforms for All Real‐Time Applications, https://www.google.com/amp/s/datafloq.com/read/amp/streaming‐analytics‐platforms‐real‐time‐apps/4658.

63 63 Yang, H., Lee, Y., Lee, H. et al. (2015) A study on word vector models for representing Korean semantic information. Phone. Speech Sci., 7, 41–47. doi: 10.13064/KSSS.2015.7.4.041.

64 64 Joseph, S. and Jasmin, E.A. (2016) Stream Computing Framework for Outage Detection in Smart Grid. Proceedings of 2015 IEEE International Conference on Power Instrumentation, Control and Computing, Thrissur, India, pp. 1–5. doi: 10.1109/PICC.2015.7455744.

65 65 Barika, M., Garg, S., Chan, A. et al. (2019) IoTSim‐stream: modelling stream graph application in cloud simulation. Futur. Gener. Comput. Syst., 99, 86–105.

66 66 Ramírez‐Gallego, S., Krawczyk, B., García, S., and Woniak, M. (2017) A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing, 239, 39–57. doi: 10.1016/j.neucom.2017.01.078.

67 67 Kolajo, T., Daramola, O., Adebiyi, A., and Seth, A. (2020) A framework for pre‐processing of social media feeds based on local knowledge base. Inf. Process. Manag., 57 (6), 102348.

68 68 Gill, S. and Lee, B. (2015) A framework for distributed cleaning of data streams. Procedia Comput. Sci., 52, 1186–1191.

69 69 Ramírez‐Gallego, S., García, S., and Herrera, F. (2018) Online entropy‐based discretization for data streaming classification. Future Gener. Comp. Syst., 86, 59–70. doi: 10.1016/j.future.2018.03.008.

70 70 Herrera, F., Charte, F., Rivera, A.J., and del Jesús, M.J. (2016) Multi‐Label Classification – Problem Analysis, Metrics and Techniques, 1st edn, Springer, Cham.

71 71 Krawczyk, B. (2016) GPU‐accelerated extreme learning machines for imbalanced data streams with concept drift. Procedia Comput. Sci., 80, 1692–1701.

72 72 Herrera, F., Ventura, S., Bello, R. et al. (2016) Multiple Instance Learning – Foundations and Algorithms, Cham, Switzerland Springer.

73 73 García, S., Ramírez‐Gallego, S., Luengo, J. et al. (2016) Big data preprocessing: methods and prospects. Big Data Anal., 1, 9. doi: 10.1186/s41044‐016‐0014‐0.

74 74 Hasan, M., Orgun, M.A., and Schwitter, R. (2019) Real‐time event detection from the twitter data stream using the twitterNews + framework. Inf. Process. Manag., 56 (3), 1146–1165.

75 75 Pagliardini, M., Gupta, P., and Jaggi, M. (2018) Unsupervised Learning of Sentence Embeddings using Compositional n‐Gram Features. Proceedings of NAACL‐HLT. ACM, New Orleans, LA, USA, pp. 528–540.

76 76 Wu, L., Morstatter, F., and Liu, H. (2018) SlangSD: building, expanding and using a sentiment dictionary of slang words for short‐text sentiment classification. Lang Res. Eval., 52 (3), 839–852. doi: 10.1007/s10579‐018‐9416‐0.

77 77 Wankhede, S., Patil, R., Sonawane, S., and Save, A. (2018) Data Pre‐Processing for Efficient Sentimental Analysis. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, pp. 723–726.

78 78 Gupta, A., Taneja, S.B., Malik, G. et al. (2019) SLANGZY: a fuzzy logic‐based algorithm for english slang meaning selection. Prog. Artif. Intell., 8, 111–121. doi: 10.1007/s13748‐018‐0159‐3.

79 79 Mehta, J.S. (2017) Concept drift in streaming data classification: algorithms, platforms and issues. Procedia Comput. Sci., 122, 804–811.

80 80 BakshiRohit, P. and Agarwal, S. (2016) Stream data mining: platforms, algorithms, performance evaluators and research trends. Int. J. Database Theory App., 9 (9), 201–218.

81 81 Wei, X., Liu, Y., and Wanga, X. (2019) A survey on quality‐assurance approximate stream processing and applications. Futur. Gener. Comput. Syst., 101, 1062–1080.

82 82 Hu, Y., Jiang, Z., Zhan, P. et al. (2018) A novel multi‐resolution representation for streaming time series. Procedia Comput. Sci., 129, 178–184. doi: 10.1016/j.procs.2018.03.069.

83 83 Yaseen, M.U., Anjum, A., Rana, O., and Hill, R. (2018) Cloud‐based scalable object detection and classification in video streams. Futur. Gener. Comput. Syst., 80, 286–298. doi: 10.1016/j.future.2017.02.003.

84 84 Boushaki, S.I., Kamel, N., and Bendjeghaba, O. (2018) High‐dimensional text datasets clustering algorithm based on cuckoo search and latent semantic indexing. J. Inf. Knowl. Manag., 17 (3), 1–24.

85 85 Neto, J.M., Severiano Junior, C.A., Guimarães, F.G. et al. (2020) Evolving clustering algorithm based on mixture of typicalities for stream. Futur. Gener. Comput. Syst., 106, 672–684.

86 86 Ibrahim, O.A., Du, Y., and Keller, J.M. (2018) Extended robust online streaming clustering (EROLSC), in Information Processing and Management of Uncertainty in Knowledge‐Based Systems: Theory and Foundations (eds J. Medina et al.), Springer, Cadiz.

87 87 Sharma, N., Masih, S., and Makhija, P. (2018) A survey on clustering algorithms for data streams. Int. J. Comput. Appl., 182 (22), 18–24.

88 88 Panagiotou, N., Katakis, I., and Gunopulos, D. (2016) Detecting events in online social networks: definitions, trends and challenges, in Solving Large Scale Learning Tasks: Challenges and Algorithms (ed. S. Michaelis), Springer, Cham, pp. 42–84.

89 89 Li, Y., Guo, L., and Zhou, Z. (2019) Towards safe weakly supervised learning. IEEE Trans. Pattern Anal. Mach. Intell., 43 (1), 334–346. doi: 10.1109/TPAMI.2019.2922396.

90 90 Le Nguyen, M.H., Gomes, H.M., and Bifet, A. (2019). Semi‐Supervised Learning Eover Streaming Data Using MOA. 2019 IEEE International Conference on Big Data (Big Data). IEEE, Los Angeles, CA, USA, pp. 553–562. doi: 10.1109/BigData47090.2019.9006217.

91 91 Zhu, Y. and Li, Y.‐F. (2020) Semi‐supervised streaming learning with emerging new labels. Proc. Thirty‐Fourth AAAI Conf. Artif. Intel., 34, 7015–7022. doi: 10.1609/aaai.v34i04.6186.

92 92 Li, P., Wu, X., Hu, X., and Wang, H. (2015) Learning concept‐drifting data streams with random ensemble decision trees. Neurocomputing, 166, 68–83.

93 93 Sethi, T.S. and Kantardzic, M. (2017) On the reliable detection of concept drift from streaming unlabeled data. Expert Syst. Appl., 82, 77–99. doi: 10.1016/j.eswa.2017.04.008.

94 94 Masud, M.M., Gao, J., Khan, L. et al. (2008) A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. 2008 Eighth IEEE International Conference on Data Mining. IEEE, Pisa, pp. 929–934. doi: 10.1109/ICDM.2008.152.

95 95 BakshiRohit, P. and Agarwal, S. (2017) Critical parameter analysis of vertical hoeffding tree for optimized performance using SAMOA. Int. J. Mach. Learn. Cybern., 8, 1389–1402.

96 96 Ullah, A., Muhammad, K., Haq, I.U., and Baik, S.W. (2019) Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non‐stationary environments. Futur. Gener. Comput. Syst., 96, 386–397. doi: 10.1016/j.future.2019.01.029.

97 97 Elsaleh, T., Enshaeifar, S., Rezvani, R. et al. (2020) IoT‐stream: a lightweight ontology for internet of things data streams and its use with data analytics and event detection services. Sensors (Basel), 20 (4), 953. doi: 10.3390/s20040953.

98 98 Janowicz, K., Haller, A., Cox, S.J. et al. (2019) SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant., 56, 1–10. doi: 10.2139/ssrn.3248499.

99 99 Gonzalez‐Gil, P., Skarmeta, A.F., and Martinez, J.A. (2019) Towards an Ontology for IoT Context‐Based Security Evaluation. Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, pp. 1–6.

100 100 Bazoobandi, H.R., Beck, H., and Urbani, J. (2017) Towards expressive stream reasoning with laser, in The Semantic Web, vol. 10587 (ed. C.E. d'Amato), LNCS, pp. 87–103.

101 101 Albahri, O.S., Albahri, A.S., Mohammed, K.I. et al. (2018) Systematic review of real‐time remote health monitoring system in triage and priority‐based sensor technology: Taxonomy, open challenges, motivation and recommendations. J. Med. Syst., 42, 80. doi: 10.1007/s10916‐018‐0943‐4.

102 102 D'Aniello, G., Gaeta, M., and Orciuoli, F. (2018) An approach based on semantic stream reasoning to support decision processes in smart cities. Telemat. Inform., 35 (1), 68–81. doi: 10.1016/j.tele.2017.09.019.

103 103 Mondal, J. and Deshpande, A. (2018) Stream querying and reasoning on social data, in Encyclopedia of Social Network Analysis and Mining (eds R. Alhajj and J. Rokne), Springer, New York. doi: 10.1007/978‐1‐4939‐7131‐2_391.

104 104 Wen, Y., Zhang, Y., Huang, L. et al. (2019) Semantic modelling of ship behavior in harbor based on ontology and dynamic bayesian network. Int. J. Geogr. Inf. Sci., 8 (3), 107. doi: 10.3390/ijgi8030107.

105 105 Compton, M., Barnaghi, P., Bermudez, R.G. et al. (2012) The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant., 17, 25–32.

106 106 Daniele, L., den Hartog, F., and Roes, J. (2015) Created in close einteraction with the industry: the smart appliances reference (saref) ontology, in Formal Ontologies Meet Industries, vol. 225 (eds R. Cuel and R. Young), LNBIP, pp. 100–112. doi: 10.1007/978‐3‐319‐21545‐7_9.

107 107 Franka, M.T., Baderb, S., Simko, V., and Zander, S. (2018) LSane: collaborative validation and enrichment of heterogeneous observation streams. Procedia Comput. Sci., 137, 235–241. doi: 10.1016/j.procs.2018.09.022.

108 108 Kolozali, S., Bermudez‐Edo, M., Puschmann, D. et al. (2014) A knowledge‐Based Approach for Real‐Time IoT Data Stream Annotation and Processing. 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom). IEEE, Taipei, pp. 215–222. doi: 10.1109/iThings.2014.39.

109 109 Cardellini, V., Mencagli, G., Talia, D., and Torquati, M. (2019) New landscapes of the data stream processing in the era of fog computing. Futur. Gener. Comput. Syst., 99, 646–650. doi: 10.1016/j.future.2019.03.027.

110 110 Wei, X., Liu, Y., Wanga, X. et al. (2019) A survey on quality‐assurance approximate stream processing and applications. Futur. Gener. Comput. Syst., 101, 1062–1080.

111 111 Quoc, D.L., Krishnan, D.R., Bhatotia, P. et al. (2018) Incremental approximate computing, in Encyclopedia of Big Data Technologies (eds S. Sakr and A. Zomaya), Springer, Cham.

112 112 Sigurleifsson, B., Anbarasu, A., and Kangur, K. (2019) An overview of count‐min sketch and its application. EasyChair, 879, 1–7.

113 113 Garofalakis, M., Gehrke, J., and Rastogi, R. (eds) (2016) Data Stream Management: Processing High‐Speed Data Streams, Springer, Berlin, Heidelberg.

114 114 Sakr, S. (2016) Big Data 2.0 Processing Systems: A Survey, Springer, Switzerland. doi: 10.1007/978‐3‐319‐38776‐5.

115 115 Yates, J. (2020) Stream Processing with IoT Data: Challenges, Best Practices, and Techniques, https://www.confluent.io/blog/stream‐processing‐iot‐data‐best‐practices‐and‐techniques.

116 116 Zhao, X., Garg, S., Queiroz, C., and Buyya, R. (2017) A taxonomy and survey of stream processing systems, in Software Architecture for Big Data and the Cloud (eds I. Mistrik, R. Bahsoon, N. Ali, et al.), Elsevier, pp. 183–206. doi: 10.1016/B978‐0‐12‐805467‐3.00011‐9.

117 117 Landset, S., Khoshgoftaar, T.M., Richter, A.N., and Hasanin, T. (2015) A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J. Big Data, 2 (1), 1–36.

Computational Statistics in Data Science

Подняться наверх