Читать книгу Computational Statistics in Data Science - Группа авторов - Страница 68

References

Оглавление

1 1 R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

2 2 Venables, W. and Ripley, B.D. (2013) S Programming, Springer Science & Business Media, New York, NY, USA.

3 3 Gentleman, R.C., Carey, V.J., Bates, D.M., et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., 5 (10), R80.

4 4 Muenchen, R.A. (2019) The Popularity of Data Science Software, r4stats.com/articles/popularity.

5 5 Oliphant, T.E. (2006) A Guide to NumPy, vol. 1, Trelgol Publishing, Provo, UT, USA, p. 85.

6 6 Jones, E., Oliphant, T., and Peterson, P. (2001) SciPy: open source scientific tools for Python.

7 7 McKinney, W. (2011) pandas: a foundational Python library for data analysis and statistics. Python High Performance Sci. Comput., 14 (9), 1–9.

8 8 Seabold, S. and Perktold, J. (2010) Econometric and Statistical Modeling with Python Skipper Seabold 1 1. Proceedings of the 9th Python in Science Conference, vol. 57, p. 61.

9 9 Hunter, J.D. (2007) Matplotlib: a 2D graphics environment. Comput. Sci. Eng., 9 (3), 90–95.

10 10 Thomas, A., Spiegelhalter, D.J., and Gilks, W.R. (1992) BUGS: a program to perform Bayesian inference using Gibbs sampling. Bayesian Stat., 4 (9), 837–842.

11 11 Plummer, M. (2005) JAGS: just another Gibbs sampler. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria.

12 12 Intel (2007) Intel® Math Kernel Library Reference Manual, https://software.intel.com/en‐us/mkl.

13 13 Whaley, R.C. and Petitet, A. (2005) Minimizing development and maintenance costs in supporting persistently optimized BLAS. Softw. Pract. Exp., 35 (2), 101–121.

14 14 Xianyi, Z., Qian, W., and Chothia, Z. (2012) OpenBLAS, p. 88, http://xianyi.github.io/OpenBLAS.

15 15 Anderson, E., Bischof, C., Demmel, J., et al. (1990) Prospectus for an Extension to LAPACK. Working Note ANL‐90‐118, Argonne National Laboratory.

16 16 Guennebaud, G., et al. (2010) Eigen v3.

17 17 Sanderson, C., and Curtin, R. (2016) Armadillo: a template‐based C++ library for linear algebra. J. Open Source Softw., 1 (2), 26.

18 18 Iglberger, K., Hager, G., Treibig, J., and Rüde, U. (2012) High Performance Smart Expression Template Math Libraries. 2012 International Conference on High Performance Computing and Simulation (HPCS) (pp. 367–373) IEEE.

19 19 Dagum, L., and Menon, R. (1998) OpenMP: an industry standard API for shared‐memory programming. IEEE Comput. Sci. Eng., 5 (1), 46–55.

20 20 Heller, T., Diehl, P., Byerly, Z., et al. (2017) Hpx‐An Open Source C++ Standard Library for Parallelism and Concurrency. Proceedings of OpenSuCo, p. 5.

21 21 Frank, E., Hall, M.A., and Witten, I.H. (2016) The WEKA Workbench, Morgan Kaufmann, Burlington, MA.

22 22 Raff, E. (2017) JSAT: Java statistical analysis tool, a library for machine learning. J. Mach. Learn. Res., 18 (1), 792–796.

23 23 Abadi, M., Agarwal, A., Barham, P., et al. (2015) TensorFlow: large‐scale machine learning on heterogeneous systems.

24 24 Zaharia, M., Xin, R.S., Wendell, P., et al. (2016) Apache spark: a unified engine for big data processing. Commun. ACM, 59 (11), 56–65.

25 25 Meng, X., Bradley, J., Yavuz, B., et al. (2016) Mllib: machine learning in Apache Spark. J. Mach. Learn. Res., 17 (1), 1235–1241.

26 26 Bostock, M., Ogievetsky, V., and Heer, J. (2011) D3 data‐driven documents. IEEE Trans. Vis. Comput. Graph., 17 (12), 2301–2309.

27 27 Bezanson, J., Karpinski, S., Shah, V.B., and Edelman, A. (2012) Julia: a fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145.

28 28 Carpenter, B., Gelman, A., Hoffman, M.D., et al. (2017) Stan: a probabilistic programming language. J. Stat. Softw., 76 (1), 1–32.

Computational Statistics in Data Science

Подняться наверх