Читать книгу Wearable and Neuronic Antennas for Medical and Wireless Applications - Группа авторов - Страница 21
References
Оглавление1. Farhang-Boroujeny, B., OFDM versus filter Bank multicarrier. IEEE Signal Process. Mag., 28, 3, 92–112, May 2011.
2. Nissel, R., Schwarz, S., Rupp, M., Filter bank multicarrier modulation schemes for future mobile communications. IEEE J. Sel. Areas Commun., 35, 1768–1782, 8, August 2017.
3. Nissel, R., Caban, S., Rupp, M., Experimental evaluation of FBMC-OQAM channel estimation based on multiple auxiliary symbols, in: IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janeiro, Brazil, July 2016.
4. Nissel, R. and Rupp, M., Enabling low-complexity MIMO in FBMCOQAM, in: IEEE Globecom Workshops (GC Wkshps), Dec 2016.
5. Nissel, R., Z¨ochmann, E., Lerch, M., Caban, S., Rupp, M., Low latency MISO FBMC-OQAM: It works for millimeter waves!, in: IEEE International Microwave Symposium, Honolulu, Hawaii, June 2017.
6. Nissel, R., Blumenstein, J., Rupp, M., Block frequency spreading: A method for low-complexity MIMO in FBMC-OQAM, in: IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, Jul 2017.
7. Nissel, R. and Rupp, M., OFDM and FBMC-OQAM in doubly-selective channels: Calculating the bit error probability. IEEE Commun. Lett., 26, 6, 1297–1300, 2017.
8. Mestre, X. and Gregoratti, D., Parallelized structures for MIMO FBMCunder strong channel frequency selectivity. IEEE Trans. Signal Process., 64, 5, 1200–1215, 2016.
9. Caus, M. and Pérez-Neira, A.I., Transmitter–receiver designs for highly frequency selective channels in MIMO FBMC systems. IEEE Trans. Signal Process., 60, 12, 6519–6532, 2012.
10. Bellanger, M., FS-FBMC: An alternative scheme for filter bank based multicarrier transmission, in: IEEE International Symposium on Communications Control and Signal Processing (ISCCSP), 2012.
11. Waldhauser, D.S., Baltar, L.G., Nossek, J.A., MMSE subcarrierequalization for filter bank based multicarrier systems, in: IEEE SPAWC, 2008.
12. Ikhlef, A. and Louveaux, J., Per subchannel equalization for MIMOFBMC/OQAM systems, in: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 2009.
13. Nissel, R., Rupp, M., Marsalek, R., FBMC-OQAM in doubly-selective channels: A new perspective on MMSE equalization. 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, pp. 1–5, 2017.
14. Marijanović, L., Schwarz, S., Rupp, M., MMSE equalization for FBMC transmission over doubly-selective channels. 2016 International Symposium on Wireless Communication Systems (ISWCS), Poznan, pp. 170–174, 2016, doi: 10.1109/ISWCS.2016.7600895.
15. Kumar, A., Albreem, M.A., Gupta, M., Alsharif, M.H., Kim, S., Future 5G Network Based Smart Hospitals: Hybrid Detection Technique for Latency Improvement. IEEE Access, 8, 153240–153249, 2020.
16. Kumar, A., Gupta, M., Le, D.N., Aly, A.A., PTS-PAPR Reduction Technique for 5G Advanced Waveforms Using BFO Algorithm. Intell. Autom. Soft Co., 27, 3, 713–722, 2021.
17. Meena, K., Gupta, M., Kumar, A., Analysis of UWB Indoor and Outdoor Channel Propagation. 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), IEEE, pp. 352–355, 2020.
18. Gupta, M., Chand, L., Pareek, M., Power preservation in OFDM using selected mapping (SLM). J. Stat. Manage. Syst., 22, 4, 763–771, 2019.
19. Lin, G., Lundheim, L., Holte, N., On efficient equalization for OFDM/OQAM systems, in: Proc. InOWo’05, Hamburg, Germany, pp. 1–5, Aug. 31–Sep. 1, 2005.
20. Cortes, C. and Vapnik, V., Support-vector networks. Mach. Learn., 20, 3, 273–297, 1995.
1 * Corresponding author: mmsansari@kau.edu.sa