Читать книгу Advanced Analytics and Deep Learning Models - Группа авторов - Страница 66
3.4.2.1 Dataset and Evaluation Matrix
ОглавлениеIn this paper, they have used two datasets based on real world from tourism and movie domains that are used to evaluate the performance. They hold on to the sample data of the users who reviewed at least five hotels and hotels that were reviewed by at least five users to obtain working data subset from TA.
They used subset that carry more than 19,000 rating instances by more than 3,100 users with around 3,500 hotels which has a high sparsity of 99.8272%. In addition, YM data are generated as shown in Tables 3.3 to 3.5. For analyzing the performance of this method, they used Mean Absolute Error (MAE) which is known for its simplicity, accuracy, and popularity [4].
Table 3.3 Dataset.
Result = YM 10-10
Result = YM 20-20
Technique | MAE | GIMAE | GPIMAE | F1 | Technique | MAE | GIMAE | GPIMAE | F1 | |
---|---|---|---|---|---|---|---|---|---|---|
MF [10] | 0.8478 | 0.7461 | 0.6765 | 0.5998 | MF [10] | 0.7397 | 0.6077 | 0.57 | 0.6698 | |
2016_Hybrid AE [23] | 0.7811 | 0.6595 | 0.8269 | 0.7042 | 2016_Hybrid AE [23] | 0.7205 | 0.6008 | 0.783 | 0.7578 | |
2011_Liwei Liu [13] | 0.6574 | 0.5204 | 0.6574 | 0.664 | 2011_Liwei Liu [13] | 0.6576 | 0.5054 | 0.6576 | 0.6828 | |
2017_Learning [22] | 0.6576 | 0.5054 | 0.6576 | 0.6629 | 2017_Learning [22] | 0.8254 | 0.5958 | 0.8131 | 0.7544 | |
2017_CCC [27] | 0.6374 | 0.624 | 0.7857 | 0.5361 | 2017_CCC [27] | 0.6798 | 0.6095 | 0.7159 | 0.5585 | |
2017_CCA [27] | 0.6618 | 0.6015 | 0.799 | 0.5343 | 2017_CCA [27] | 0.6691 | 0.6042 | 0.6971 | 0.5641 | |
2017_CIC [27] | 0.6719 | 0.6542 | 0.7743 | 0.5327 | 2017_CIC [27] | 0.7029 | 0.6218 | 0.7064 | 0.5677 | |
Extended_SAE_3 | 0.5783 | 0.487 | 0.6501 | 0.7113 | Extended_SAE_3 | 0.5906 | 0.4959 | 0.6523 | 0.7973 | |
Extended_SAE_5 | 0.564 | 0.4842 | 0.6503 | 0.7939 | Extended_SAE_5 | 0.5798 | 0.4834 | 0.6306 | 0.807 |
Result = TA 5-5
Result = YM 5-5
Technique | MAE | GIMAE | GPIMAE | F1 | Technique | MAE | GIMAE | GPIMAE | F1 | |
---|---|---|---|---|---|---|---|---|---|---|
MF [10] | 1.2077 | 1.3055 | 0.8079 | 0.4491 | MF [10] | 1.2961 | 1.2755 | 0.6204 | 0.4882 | |
2016_Hybrid AE [23] | 0.6531 | 0.6022 | 0.8406 | 0.6789 | 2016_Hybrid AE [23] | 0.7691 | 0.6314 | 0.8244 | 0.6798 | |
2011_Liwei Liu [13] | 0.772 | 0.5262 | 0.6282 | 0.6102 | 2011_Liwei Liu [13] | 0.7233 | 0.575 | 0.7232 | 0.6706 | |
2017_Learning [22] | 0.6204 | 0.5907 | 0.6103 | 0.6907 | 2017_Learning [22] | 0.6514 | 0.5019 | 0.5824 | 0.7107 | |
2017_CCC [27] | 0.6737 | 0.5878 | 0.5901 | 0.4497 | 2017_CCC [27] | 0.6888 | 0.6242 | 0.7577 | 0.538 | |
2017_CCA [27] | 0.6914 | 0.6124 | 0.6095 | 0.4826 | 2017_CCA [27] | 0.6891 | 0.5417 | 0.5972 | 0.564 | |
2017_CIC [27] | 0.7129 | 0.6536 | 0.6814 | 0.4636 | 2017_CIC [27] | 0.7012 | 0.642 | 0.7439 | 0.537 | |
Extended_SAE_3 | 0.5674 | 0.521 | 0.5379 | 0.7458 | Extended_SAE_3 | 0.608 | 0.4636 | 0.5673 | 0.7109 | |
Extended_SAE_5 | 0.5593 | 0.5075 | 0.549 | 0.7384 | Extended_SAE_5 | 0.5854 | 0.4633 | 0.5592 | 0.6073 |