Читать книгу Advanced Analytics and Deep Learning Models - Группа авторов - Страница 66

3.4.2.1 Dataset and Evaluation Matrix

Оглавление

In this paper, they have used two datasets based on real world from tourism and movie domains that are used to evaluate the performance. They hold on to the sample data of the users who reviewed at least five hotels and hotels that were reviewed by at least five users to obtain working data subset from TA.

They used subset that carry more than 19,000 rating instances by more than 3,100 users with around 3,500 hotels which has a high sparsity of 99.8272%. In addition, YM data are generated as shown in Tables 3.3 to 3.5. For analyzing the performance of this method, they used Mean Absolute Error (MAE) which is known for its simplicity, accuracy, and popularity [4].

Table 3.3 Dataset.

Result = YM 10-10

Result = YM 20-20

Technique MAE GIMAE GPIMAE F1 Technique MAE GIMAE GPIMAE F1
MF [10] 0.8478 0.7461 0.6765 0.5998 MF [10] 0.7397 0.6077 0.57 0.6698
2016_Hybrid AE [23] 0.7811 0.6595 0.8269 0.7042 2016_Hybrid AE [23] 0.7205 0.6008 0.783 0.7578
2011_Liwei Liu [13] 0.6574 0.5204 0.6574 0.664 2011_Liwei Liu [13] 0.6576 0.5054 0.6576 0.6828
2017_Learning [22] 0.6576 0.5054 0.6576 0.6629 2017_Learning [22] 0.8254 0.5958 0.8131 0.7544
2017_CCC [27] 0.6374 0.624 0.7857 0.5361 2017_CCC [27] 0.6798 0.6095 0.7159 0.5585
2017_CCA [27] 0.6618 0.6015 0.799 0.5343 2017_CCA [27] 0.6691 0.6042 0.6971 0.5641
2017_CIC [27] 0.6719 0.6542 0.7743 0.5327 2017_CIC [27] 0.7029 0.6218 0.7064 0.5677
Extended_SAE_3 0.5783 0.487 0.6501 0.7113 Extended_SAE_3 0.5906 0.4959 0.6523 0.7973
Extended_SAE_5 0.564 0.4842 0.6503 0.7939 Extended_SAE_5 0.5798 0.4834 0.6306 0.807

Result = TA 5-5

Result = YM 5-5

Technique MAE GIMAE GPIMAE F1 Technique MAE GIMAE GPIMAE F1
MF [10] 1.2077 1.3055 0.8079 0.4491 MF [10] 1.2961 1.2755 0.6204 0.4882
2016_Hybrid AE [23] 0.6531 0.6022 0.8406 0.6789 2016_Hybrid AE [23] 0.7691 0.6314 0.8244 0.6798
2011_Liwei Liu [13] 0.772 0.5262 0.6282 0.6102 2011_Liwei Liu [13] 0.7233 0.575 0.7232 0.6706
2017_Learning [22] 0.6204 0.5907 0.6103 0.6907 2017_Learning [22] 0.6514 0.5019 0.5824 0.7107
2017_CCC [27] 0.6737 0.5878 0.5901 0.4497 2017_CCC [27] 0.6888 0.6242 0.7577 0.538
2017_CCA [27] 0.6914 0.6124 0.6095 0.4826 2017_CCA [27] 0.6891 0.5417 0.5972 0.564
2017_CIC [27] 0.7129 0.6536 0.6814 0.4636 2017_CIC [27] 0.7012 0.642 0.7439 0.537
Extended_SAE_3 0.5674 0.521 0.5379 0.7458 Extended_SAE_3 0.608 0.4636 0.5673 0.7109
Extended_SAE_5 0.5593 0.5075 0.549 0.7384 Extended_SAE_5 0.5854 0.4633 0.5592 0.6073

Advanced Analytics and Deep Learning Models

Подняться наверх