Читать книгу Sustainable Solutions for Environmental Pollution, Volume 2 - Группа авторов - Страница 45
1.10.6 Field Implementations
ОглавлениеThere are few full-scale field implementations of electro-bioremediation (Kronenberg et al., 2017). Some deal with BMFC setup in rivers (Donovan et al., 2008; Friedman et al., 2016), lagoons (Nielsen et al., 2007; Kaku et al., 2008), paddy-fields (Kamaraj et al., 2020), or ponds (Jeon et al., 2012; Schievano et al., 2017). Field data are still scarce and conflicting. But the actual CW-BMFC configuration seems site-specific and must be tailored according to its own features (Li and Yu, 2015).
Management potential needs some optimization efforts in order to finer control bioremediation processes. In particular, it requires a fine tuning of the anode potential to adjust the ohmic loss variation, demanding a three-electrode setup, to measure precise and well-controlled electrochemical potential. Microbial consortia change, according to external resistance imposed (Lyon et al., 2010; Goud and Mohan, 2013; Lu et al., 2014a; Li et al., 2017a), favoring some to the detriment of other ones, deeply affecting C, N, and S cycles (Sanchez, 2017). Experimental results show that various microbial consortia are able to produce same power levels, demonstrating their flexibility and resilience (Lyon et al., 2010). The pathogen fate in a BMFC remains unclear (Morato et al., 2014). Some studies show its high disinfecting potential (Gajda et al., 2016; Ieropoulos et al., 2017). Therefore, BMFC in-field implementing requires further studies on sanitary hazards and biodiversity loss related to the electro-bioremediation.