Читать книгу Interventional Cardiology - Группа авторов - Страница 199

Using Physiology to Guide PCI Strategy

Оглавление

There is significant practical value in mapping coronary physiology onto angiographic images as it facilitates real‐world application of physiology in treating complex coronary disease. Transtenotic pressure gradients can be overlaid onto angiography in real‐time such that Interventionalists can interact with the data to model potential physiological outcomes for a given interventional strategy. Resting physiological parameters such as iFR can readily predict the impact of removing a given stenosis, enabling a prediction of post‐PCI physiology.

Co‐registered coronary artery mapping represents the next application of physiology in the Cardiac Catheterization laboratory and is a significant leap beyond the traditional focus on whether a pressure index is positive or negative. This has been facilitated by a quantum leap in computing power enabling real‐time tracking of pressure wire movements within a moving coronary vessel during fluoroscopy. Wire movement can be tracked in three dimensions to produce highly credible and spatially accurate co‐registered map of the pressure gradients measured by the pressure sensor on the wire. Mapping is best achieved with technologies that can track the wire position at high speed without needing a high frame rate fluoroscopy.

Real‐time co‐registration allows for precise identification of the steps on a pressure wire pullback curve corresponding to the coronary angiogram. Whilst coronary angiography remains poor at identifying lesion significance, it remains key for guiding intervention and marking clear landmarks is essential. The same concept can be deployed for intravascular ultrasound and optical coherence tomography, and when combined with physiology, this provides the truest assessment of the coronary vessels in relation to ischemia and potential interventional approaches.

Interventional Cardiology

Подняться наверх