Читать книгу Interventional Cardiology - Группа авторов - Страница 282

Interactive multiple choice questions are available for this chapter on www.wiley.com/go/dangas/cardiology References

Оглавление

1 1 Zipes DP, Libby P, Bonow RO, et al. Braunwald's heart disease: a textbook of cardiovascular medicine. 2019. Elsevier Science. Philadelphia.

2 2 Bischoff B, Hein F, Meyer T, et al. Comparison of sequential and helical scanning for radiation dose and image quality: results of the Prospective Multicenter Study on Radiation Dose Estimates of Cardiac CT Angiography (PROTECTION) I Study. AJR Am J Roentgenol. 2010; 194(6):1495–9.

3 3 Flohr TG, McCollough CH, Bruder H, et al. First performance evaluation of a dual‐source CT (DSCT) system. Eur Radiol. 2006; 16(2):256–68.

4 4 Achenbach S, Ropers D, Pohle FK, et al. Detection of coronary artery stenoses using multi‐detector CT with 16 x 0.75 collimation and 375 ms rotation. Eur Heart J. 2005; 26(19):1978–86.

5 5 Dewey M, Teige F, Schnapauff D, et al. Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med. 2006; 145(6):407–15.

6 6 Garcia MJ, Lessick J, Hoffmann MH. Accuracy of 16‐row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA. 2006; 296(4):403–11.

7 7 Hausleiter J, Meyer T, Hadamitzky M, et al. Non‐invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial. Eur Heart J. 2007; 28(24):3034–41.

8 8 Hoffmann MH, Shi H, Schmitz BL, et al. Noninvasive coronary angiography with multislice computed tomography. JAMA. 2005; 293(20):2471–8.

9 9 Leber AW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64‐slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005; 46(1):147–54.

10 10 Leschka S, Alkadhi H, Plass A, et al. Accuracy of MSCT coronary angiography with 64‐slice technology: first experience. Eur Heart J. 2005; 26(15):1482–7.

11 11 Mollet NR, Cademartiri F, Krestin GP, et al. Improved diagnostic accuracy with 16‐row multi‐slice computed tomography coronary angiography. J Am Coll Cardiol. 2005; 45(1):128–32.

12 12 Mollet NR, Cademartiri F, Nieman K, et al. Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol. 2004; 43(12):2265–70.

13 13 Mollet NR, Cademartiri F, van Mieghem CA, et al. High‐resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005; 112(15):2318–23.

14 14 Nikolaou K, Knez A, Rist C, et al. Accuracy of 64‐MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol. 2006; 187(1):111–7.

15 15 Nikolaou K, Saam T, Rist C, et al. [Pre‐ and postsurgical diagnostics with dual‐source computed tomography in cardiac surgery]. Radiologe. 2007; 47(4):310–8.

16 16 Pugliese F, Mollet NR, Runza G, et al. Diagnostic accuracy of non‐invasive 64‐slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol. 2006; 16(3):575–82.

17 17 Raff GL, Gallagher MJ, O'Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64‐slice spiral computed tomography. J Am Coll Cardiol. 2005; 46(3):552–7.

18 18 Ropers D, Rixe J, Anders K, et al. Usefulness of multidetector row spiral computed tomography with 64‐ x 0.6‐mm collimation and 330‐ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol. 2006; 97(3):343–8.

19 19 Scheffel H, Alkadhi H, Plass A, t al. Accuracy of dual‐source CT coronary angiography: First experience in a high pre‐test probability population without heart rate control. Eur Radiol. 2006; 16(12):2739–47.

20 20 Weustink AC, Meijboom WB, Mollet NR, et al. Reliable high‐speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol. 2007; 50(8):786–94.

21 21 Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64‐multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008; 52(21):1724–32.

22 22 Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64‐slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008; 52(25):2135–44.

23 23 Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64‐row CT. N Engl J Med. 2008; 359(22):2324–36.

24 24 Hendel RC, Patel MR, Kramer CM, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006; 48(7):1475–97.

25 25 Van Mieghem CA, Thury A, Meijboom WB, et al. Detection and characterization of coronary bifurcation lesions with 64‐slice computed tomography coronary angiography. Eur Heart J. 2007; 28(16):1968–76.

26 26 Wolny R, Pregowski J, Kruk M, t al. Computed tomography angiography versus angiography for guiding percutaneous coronary interventions in bifurcation lesions ‐ A prospective randomized pilot study. J Cardiovasc Comput Tomogr. 2017; 11(2):119–28.

27 27 Lee SH, Lee JM, Song YB, et al. Prediction of side branch occlusions in percutaneous coronary interventions by coronary computed tomography: the CT bifurcation score as a novel tool for predicting intraprocedural side branch occlusion. EuroIntervention. 2019; 15(9):e788–e95.

28 28 Dai T, Wang JR, Hu PF. Diagnostic performance of computed tomography angiography in the detection of coronary artery in‐stent restenosis: evidence from an updated meta‐analysis. Eur Radiol. 2018; 28(4):1373–82.

29 29 Van Mieghem CA, Cademartiri F, Mollet NR, et al. Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation. 2006; 114(7):645–53.

30 30 Smith SC, Jr., Feldman TE, Hirshfeld JW, Jr., et al. ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention‐Summary Article: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). J Am Coll Cardiol. 2006; 47(1):216–35.

31 31 Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr. 2010; 4(6):407.e1–33.

32 32 Opolski MP, Achenbach S. CT Angiography for Revascularization of CTO: Crossing the Borders of Diagnosis and Treatment. JACC Cardiovasc Imaging. 2015; 8(7):846–58.

33 33 Jungmann F, Emrich T, Mildenberger P, et al. Multidetector Computed Tomography Angiography (MD‐CTA) of Coronary Artery Bypass Grafts ‐ Update 2017. ROFO. 2018; 190(3):237–49.

34 34 Collet C, Onuma Y, Andreini D, et al. Coronary computed tomography angiography for heart team decision‐making in multivessel coronary artery disease. Eur Heart J. 2018; 39(41):3689–98.

35 35 Maffei E, Seitun S, Guaricci AI, Cademartiri F. Chest pain: coronary CT in the ER. Br J Radiol. 2016; 89(1061):20150954.

36 36 Hoffmann U, Bamberg F, Chae CU, et al. Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol. 2009; 53(18):1642–50.

37 37 Hamilton‐Craig C, Fifoot A, Hansen M, et al. Diagnostic performance and cost of CT angiography versus stress ECG‐‐a randomized prospective study of suspected acute coronary syndrome chest pain in the emergency department (CT‐COMPARE). Int J Cardiol. 2014; 177(3):867–73.

38 38 Litt HI, Gatsonis C, Snyder B, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012; 366(15):1393–403.

39 39 Hoffmann U, Truong QA, Schoenfeld DA, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012; 367(4):299–308.

40 40 Goldstein JA, Chinnaiyan KM, Abidov A, et al. The CT‐STAT (Coronary Computed Tomographic Angiography for Systematic Triage of Acute Chest Pain Patients to Treatment) trial. J Am Coll Cardiol. 2011; 58(14):1414–22.

41 41 Douglas PS, Hoffmann U, Patel MR, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015; 372(14):1291–300.

42 42 Newby DE, Adamson PD, Berry C, et al. Coronary CT Angiography and 5‐Year Risk of Myocardial Infarction. N Engl J Med. 2018; 379(10):924–33.

43 43 Moss AJ, Williams MC, Newby DE, Nicol ED. The Updated NICE Guidelines: Cardiac CT as the First‐Line Test for Coronary Artery Disease. Curr Cardiovasc Imaging Rep. 2017; 10(5):15.

44 44 Smulders MW, Kietselaer B, Wildberger JE, et al. Initial Imaging‐Guided Strategy Versus Routine Care in Patients With Non‐ST‐Segment Elevation Myocardial Infarction. J Am Coll Cardiol. 2019; 74(20):2466–77.

45 45 Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol. 2014; 63(12):1145–55.

46 46 Hlatky MA, De Bruyne B, Pontone G, et al. Quality‐of‐Life and Economic Outcomes of Assessing Fractional Flow Reserve With Computed Tomography Angiography: PLATFORM. J Am Coll Cardiol. 2015; 66(21):2315–23.

47 47 Zaid S, Ahmad H, Kaple R, et al. Novel Predictors of New Persistent Left Bundle Branch Block After SAPIEN 3 Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv. 2020; 13(9):1141–3.

48 48 Zaid S, Sengupta A, Okoli K, et al. Novel Anatomic Predictors of New Persistent Left Bundle Branch Block After Evolut Transcatheter Aortic Valve Implantation. Am J Cardiol. 2020; 125(8):1222–9.

49 49 Sengupta A, Zaid S, Ahmad H, et al. Prosthesis–Patient Mismatch Between Transcatheter Heart Valves in TAVR Using a Computed Tomography–Derived Comparative Model. JACC: Cardiovascular Interventions. 2020; 13(6):790.

50 50 Blanke P, Weir‐McCall JR, Achenbach S, et al. Computed Tomography Imaging in the Context of Transcatheter Aortic Valve Implantation (TAVI)/Transcatheter Aortic Valve Replacement (TAVR): An Expert Consensus Document of the Society of Cardiovascular Computed Tomography. JACC: Cardiovascular Imaging. 2019; 12(1):1–24.

51 51 Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017; 14(10):e275–e444.

52 52 Krishnamurthy R, Cheong B, Muthupillai R. Tools for cardiovascular magnetic resonance imaging. Cardiovasc Diagn Ther. 2014; 4(2):104–25.

53 53 Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010; 55(23):2614–62.

54 54 Doherty JU, Kort S, Mehran R, et al. ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons. J Nucl Cardiol. 2019; 26(4):1392–413.

55 55 McCrohon JA, Moon JC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium‐enhanced cardiovascular magnetic resonance. Circulation. 2003; 108(1):54–9.

56 56 Choudhury L, Mahrholdt H, Wagner A, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002; 40(12):2156–64.

57 57 Moon JC, McKenna WJ, McCrohon JA, et al. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol. 2003; 41(9):1561–7.

58 58 Assomull RG, Prasad SK, Lyne J, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006; 48(10):1977–85.

59 59 Skouri HN, Dec GW, Friedrich MG, Cooper LT. Noninvasive imaging in myocarditis. J Am Coll Cardiol. 2006; 48(10):2085–93.

60 60 Friedrich MG, Sechtem U, Schulz‐Menger J, et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol. 2009; 53(17):1475–87.

61 61 Anderson LJ, Westwood MA, Prescott E, et al. Development of thalassaemic iron overload cardiomyopathy despite low liver iron levels and meticulous compliance to desferrioxamine. Acta Haematol. 2006; 115(1–2):106–8.

62 62 Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non‐compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005; 46(1):101–5.

63 63 Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J. 2010; 31(7):806–14.

64 64 Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005; 111(2):186–93.

65 65 Taylor AM, Thorne SA, Rubens MB, et al. Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and x‐ray coronary angiography. Circulation. 2000; 101(14):1670–8.

66 66 McConnell MV, Ganz P, Selwyn AP, et al. Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation. 1995; 92(11):3158–62.

67 67 Cheitlin MD, De Castro CM, McAllister HA. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of Valsalva, A not‐so‐minor congenital anomaly. Circulation. 1974; 50(4):780–7.

68 68 Levin DC, Fellows KE, Abrams HL. Hemodynamically significant primary anomalies of the coronary arteries. Angiographic aspects. Circulation. 1978; 58(1):25–34.

69 69 Akagi T, Rose V, Benson LN, Newman A, Freedom RM. Outcome of coronary artery aneurysms after Kawasaki disease. J Pediatr. 1992; 121(5 Pt 1):689–94.

70 70 Mavrogeni S, Papadopoulos G, Douskou M, et al. Magnetic resonance angiography is equivalent to X‐ray coronary angiography for the evaluation of coronary arteries in Kawasaki disease. J Am Coll Cardiol. 2004; 43(4):649–52.

71 71 Mavrogeni S, Papadopoulos G, Douskou M, et al. Magnetic resonance angiography, function and viability evaluation in patients with Kawasaki disease. J Cardiovasc Magn Reson. 2006; 8(3):493–8.

72 72 Hajhosseiny R, Bustin A, Munoz C, et al. Coronary Magnetic Resonance Angiography: Technical Innovations Leading Us to the Promised Land? JACC Cardiovasc Imaging. 2020.

73 73 Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001; 345(26):1863–9.

74 74 Kato S, Kitagawa K, Ishida N, et al. Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol. 2010; 56(12):983–91.

75 75 Langerak SE, Vliegen HW, Jukema JW, et al. Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation. 2003; 107(11):1502–8.

76 76 Kwong RY, Ge Y, Steel K, et al. Cardiac Magnetic Resonance Stress Perfusion Imaging for Evaluation of Patients With Chest Pain. J Am Coll Cardiol. 2019; 74(14):1741–55.

77 77 Al‐Sabeq B, Nabi F, Shah DJ. Assessment of myocardial viability by cardiac MRI. Curr Opin Cardiol. 2019; 34(5):502–9.

78 78 Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013; 128(16):1810–52.

79 79 Cosyns B, Plein S, Nihoyanopoulos P, et al. European Association of Cardiovascular Imaging (EACVI) position paper: Multimodality imaging in pericardial disease. Eur Heart J Cardiovasc Imaging. 2015; 16(1):12–31.

80 80 Partington SL, Valente AM. Cardiac magnetic resonance in adults with congenital heart disease. Methodist Debakey Cardiovasc J. 2013; 9(3):156–62.

81 81 Hundley WG, Li HF, Lange RA, et al. Assessment of left‐to‐right intracardiac shunting by velocity‐encoded, phase‐difference magnetic resonance imaging. A comparison with oximetric and indicator dilution techniques. Circulation. 1995; 91(12):2955–60.

82 82 Beerbaum P, Körperich H, Barth P, et al. Noninvasive quantification of left‐to‐right shunt in pediatric patients: phase‐contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001; 103(20):2476–82.

83 83 Prakash A, Powell AJ, Geva T. Multimodality noninvasive imaging for assessment of congenital heart disease. Circ Cardiovasc Imaging. 2010; 3(1):112–25.

84 84 Carminati M, Agnifili M, Arcidiacono C, et al. Role of imaging in interventions on structural heart disease. Expert Rev Cardiovasc Ther. 2013; 11(12):1659–76.

85 85 Eicken A, Ewert P, Hager A, et al. Percutaneous pulmonary valve implantation: two‐centre experience with more than 100 patients. Eur Heart J. 2011; 32(10):1260–5.

86 86 Zahn EM, Hellenbrand WE, Lock JE, McElhinney DB. Implantation of the melody transcatheter pulmonary valve in patients with a dysfunctional right ventricular outflow tract conduit early results from the u.s. Clinical trial. J Am Coll Cardiol. 2009; 54(18):1722–9.

87 87 Suzuki J, Caputo GR, Kondo C, Higgins CB. Cine MR imaging of valvular heart disease: display and imaging parameters affect the size of the signal void caused by valvular regurgitation. AJR Am J Roentgenol. 1990; 155(4):723–7.

88 88 Mathew RC, Löffler AI, Salerno M. Role of Cardiac Magnetic Resonance Imaging in Valvular Heart Disease: Diagnosis, Assessment, and Management. Curr Cardiol Rep. 2018; 20(11):119.

89 89 Kilner PJ, Manzara CC, Mohiaddin RH, et al. Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation. 1993; 87(4):1239–48.

90 90 Loubeyre P, Delignette A, Bonefoy L, et al. Magnetic resonance imaging evaluation of the ascending aorta after graft‐inclusion surgery: comparison between an ultrafast contrast‐enhanced MR sequence and conventional cine‐MRI. J Magn Reson Imaging. 1996; 6(3):478–83.

91 91 Fattori R, Nienaber CA. MRI of acute and chronic aortic pathology: pre‐operative and postoperative evaluation. J Magn Reson Imaging. 1999; 10(5):741–50.

92 92 Nielsen JC, Powell AJ, Gauvreau K, et al. Magnetic resonance imaging predictors of coarctation severity. Circulation. 2005; 111(5):622–8.

93 93 Didier D, Saint‐Martin C, Lapierre C, et al. Coarctation of the aorta: pre and postoperative evaluation with MRI and MR angiography; correlation with echocardiography and surgery. Int J Cardiovasc Imaging. 2006; 22(3–4):457–75.

94 94 Muzzarelli S, Meadows AK, Ordovas KG, et al. Usefulness of cardiovascular magnetic resonance imaging to predict the need for intervention in patients with coarctation of the aorta. Am J Cardiol. 2012; 109(6):861–5.

95 95 Takahashi EA, Kinsman KA, Neidert NB, Young PM. Guiding peripheral arterial disease management with magnetic resonance imaging. VASA. 2019; 48(3):217–22.

96 96 Nael K, Villablanca JP, Saleh R, et al. Contrast‐enhanced MR angiography at 3T in the evaluation of intracranial aneurysms: a comparison with time‐of‐flight MR angiography. AJNR Am J Neuroradiol. 2006; 27(10):2118–21.

97 97 Villablanca JP, Nael K, Habibi R, et al. 3 T contrast‐enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time‐of‐flight magnetic resonance angiography and multislice computed tomography angiography. Invest Radiol. 2006; 41(11):799–805.

98 98 Nael K, Villablanca JP, Pope WB, et al. Supraaortic arteries: contrast‐enhanced MR angiography at 3.0 T‐‐highly accelerated parallel acquisition for improved spatial resolution over an extended field of view. Radiology. 2007; 242(2):600–9.

99 99 Fabrega‐Foster KE, Agarwal S, Rastegar N, et al. Efficacy and safety of gadobutrol‐enhanced MRA of the renal arteries: Results from GRAMS (Gadobutrol‐enhanced renal artery MRA study), a prospective, intraindividual multicenter phase 3 blinded study. J Magn Reson Imaging. 2018; 47(2):572–81.

100 100 Holmes DR, Jr., Mack MJ, Kaul S, et al. 2012 ACCF/AATS/SCAI/STS expert consensus document on transcatheter aortic valve replacement. J Am Coll Cardiol. 2012; 59(13):1200–54.

101 101 Jabbour A, Ismail TF, Moat N, et al. Multimodality imaging in transcatheter aortic valve implantation and post‐procedural aortic regurgitation: comparison among cardiovascular magnetic resonance, cardiac computed tomography, and echocardiography. J Am Coll Cardiol. 2011; 58(21):2165–73.

102 102 Koos R, Altiok E, Mahnken AH, et al. Evaluation of aortic root for definition of prosthesis size by magnetic resonance imaging and cardiac computed tomography: implications for transcatheter aortic valve implantation. Int J Cardiol. 2012; 158(3):353–8.

103 103 Ruile P, Blanke P, Krauss T, et al. Pre‐procedural assessment of aortic annulus dimensions for transcatheter aortic valve replacement: comparison of a non‐contrast 3D MRA protocol with contrast‐enhanced cardiac dual‐source CT angiography. Eur Heart J Cardiovasc Imaging. 2016; 17(4):458–66.

104 104 Miyazaki M, Lee VS Nonenhanced MR angiography. Radiology. 2008; 248(1):20–43.

105 105 Cavalcante JL, Schoenhagen P. Role of cross‐sectional imaging for structural heart disease interventions. Cardiol Clin. 2013; 31(3):467–78.

106 106 Corrigan FE, 3rd, Gleason PT, Condado JF, et al. Imaging for Predicting, Detecting, and Managing Complications After Transcatheter Aortic Valve Replacement. JACC Cardiovasc Imaging. 2019; 12(5):904–20.

107 107 Altiok E, Frick M, Meyer CG, et al. Comparison of two‐ and three‐dimensional transthoracic echocardiography to cardiac magnetic resonance imaging for assessment of paravalvular regurgitation after transcatheter aortic valve implantation. Am J Cardiol. 2014; 113(11):1859–66.

108 108 Ribeiro HB, Orwat S, Hayek SS, et al. Cardiovascular Magnetic Resonance to Evaluate Aortic Regurgitation After Transcatheter Aortic Valve Replacement. J Am Coll Cardiol. 2016; 68(6):577–85.

109 109 Rogers T, Lederman RJ. Interventional CMR: Clinical applications and future directions. Curr Cardiol Rep. 2015; 17(5):31.

Interventional Cardiology

Подняться наверх