Читать книгу Poly(lactic acid) - Группа авторов - Страница 124
REFERENCES
Оглавление1 1. M. Brzeziński, T. Biela, Stereocomplexed polylactides, in: S. Kobayashi, K. Müllen (Eds.), Encyclopedia of Polymeric Nanomaterials, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. p. 1–10.
2 2. Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Stereocomplex formation between enantiomeric poly(lactides), Macromolecules 1987, 20(4), 904–906.
3 3. J. R. Murdoch, G. L. Loomis, Polylactide compositions, US4719246A, 1988.
4 4. F. Luo, A. Fortenberry, J. Ren, Z. Qiang, Recent progress in enhancing poly(lactic acid) stereocomplex formation for material property improvement, Front. Chem. 2020, 8, 688.
5 5. D. Karst, Y. Yang, Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA, Polymer 2006, 47(13), 4845–4850.
6 6. H. Tsuji in vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well‐homo‐crystallized blend and nonblended films, Biomaterials 2003, 24(4), 537–547.
7 7. M. Kakuta, M. Hirata, Y. Kimura, Stereoblock polylactides as high‐performance bio‐based polymers, Polym. Rev. 2009, 49(2), 107–140.
8 8. H. Tsuji, Poly(lactic acid) stereocomplexes: a decade of progress, Adv. Drug Deliv. Rev. 2016, 107, 97–135.
9 9. M. Saravanan, A. J. Domb, A contemporary review on—polymer stereocomplexes and its biomedical application, Eur. J. Nanomed. 2013, 5(2), 81–96.
10 10. P. Pan, Y. Inoue, Polymorphism and isomorphism in biodegradable polyesters, Progr. Polym. Sci. 2009, 34(7), 605–640.
11 11. L. Han, P. Pan, G. Shan, Y. Bao, Stereocomplex crystallization of high‐molecular‐weight poly(l‐lactic acid)/poly(d‐lactic acid) racemic blends promoted by a selective nucleator, Polymer 2015, 63, 144–153.
12 12. S. Nagarajan, D. Krishnan, V. P. Sivaprasad, E. Bhoje Gowd, Chapter 5—Crystallization behavior of crystalline–amorphous and crystalline–crystalline block copolymers containing poly(l‐lactide), in: S. Thomas, P. M. Arif, E. B. Gowd, N. Kalarikkal (Eds.), Crystallization in Multiphase Polymer Systems, Elsevier, Amsterdam, 2018, pp. 93–122.
13 13. H. Tsuji, F. Horii, S. H. Hyon, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions, Macromolecules 1991, 24(10), 2719–2724.
14 14. K. Scheuer, D. Bandelli, C. Helbing, C. Weber, J. Alex, J. B. Max, et al., Self‐assembly of copolyesters into stereocomplex crystallites tunes the properties of polyester nanoparticles, Macromolecules 2020, 53(19), 8340–8351.
15 15. B. Na, J. Zhu, R. Lv, Y. Ju, R. Tian, B. Chen, Stereocomplex formation in enantiomeric polylactides by melting recrystallization of homocrystals: crystallization kinetics and crystal morphology, Macromolecules 2014, 47(1), 347–352.
16 16. H. Tsuji, S. Yamamoto, Enhanced stereocomplex crystallization of biodegradable enantiomeric poly(lactic acid)s by repeated casting, Macromol. Mater. Eng. 2011, 296(7), 583–589.
17 17. R. Lv, N. Peng, T. Jin, B. Na, J. Wang, H. Liu, Stereocomplex mesophase and its phase transition in enantiomeric polylactides, Polymer 2017, 116, 324–330.
18 18. E. M. Woo, L. Chang, Crystallization and morphology of stereocomplexes in nonequimolar mixtures of poly(l‐lactic acid) with excess poly(d‐lactic acid), Polymer 2011, 52(26), 6080–6089.
19 19. L. Gardella, A. Basso, M. Prato, O. Monticelli, On stereocomplexed polylactide materials as support for PAMAM dendrimers: synthesis and properties, RSC Adv. 2015, 5(58), 46774–46784.
20 20. A. Gupta, N. Mulchandani, M. Shah, S. Kumar, V. Katiyar, Functionalized chitosan mediated stereocomplexation of poly(lactic acid): influence on crystallization, oxygen permeability, wettability and biocompatibility behavior, Polymer 2018, 142, 196–208.
21 21. L. Bouapao, H. Tsuji, Stereocomplex crystallization and spherulite growth of low molecular weight poly(l‐lactide) and poly(d‐lactide) from the melt, Macromol. Chem. Phys. 2009, 210(12), 993–1002.
22 22. T. Biela, A. Duda, S. Penczek, Enhanced melt stability of star‐shaped stereocomplexes as compared with linear stereocomplexes, Macromolecules 2006, 39(11), 3710–3713.
23 23. L. Jiang, P. Lv, P. Ma, H. Bai, W. Dong, M. Chen, Stereocomplexation kinetics of enantiomeric poly(l‐lactide)/poly(d‐lactide) blends seeded by nanocrystalline cellulose, RSC Adv. 2015, 5(87), 71115–71119.
24 24. Z. Xiong, X. Zhang, R. Wang, S. de Vos, R. Wang, C. A. P. Joziasse, et al., Favorable formation of stereocomplex crystals in poly(l‐lactide)/poly(d‐lactide) blends by selective nucleation, Polymer 2015, 76, 98–104.
25 25. Q. Xie, X. Chang, Q. Qian, P. Pan, C. Y. Li, Structure and morphology of poly(lactic acid) stereocomplex nanofiber shish kebabs, ACS Macro Lett. 2020, 9(1), 103–107.
26 26. M. Septiyanti, A. A. Septevani, M. Ghozali, S. Fahmiati, E. Triwulandari, W. K. Restu, et al., Effect of solvent combination on electrospun stereocomplex polylactic acid nanofiber properties, Macromol. Symp. 2020, 391(1), 1900134.
27 27. N. Kurokawa, A. Hotta, Thermomechanical properties of highly transparent self‐reinforced polylactide composites with electrospun stereocomplex polylactide nanofibers, Polymer 2018, 153, 214–222.
28 28. M. Spasova, N. Manolova, D. Paneva, R. Mincheva, P. Dubois, I. Rashkov, et al., Polylactide stereocomplex‐based electrospun materials possessing surface with antibacterial and hemostatic properties, Biomacromolecules 2010, 11(1), 151–159.
29 29. H. Tsuji, M. Nakano, M. Hashimoto, K. Takashima, S. Katsura, A. Mizuno, Electrospinning of poly(lactic acid) stereocomplex nanofibers, Biomacromolecules 2006, 7(12), 3316–3320.
30 30. Y. Furuhashi, Y. Kimura, N. Yoshie, Self‐assembly of stereocomplex‐type poly(lactic acid), Polym. J. 2006, 38(10), 1061–1067.
31 31. L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Epitaxial crystallization and crystalline polymorphism of polylactides, Polymer 2000, 41(25), 8909–8919.
32 32. T. Okihara, M. Tsuji, A. Kawaguchi, K.‐I. Katayama, H. Tsuji, S.‐H. Hyon, et al., Crystal structure of stereocomplex of poly(l‐lactide) and poly(d‐lactide), J. Macromol. Sci. Part B 1991, 30(1–2), 119–140.
33 33. L. Cartier, T. Okihara, B. Lotz, Triangular polymer single crystals: stereocomplexes, twins, and frustrated structures, Macromolecules 1997, 30(20), 6313–6322.
34 34. D. Brizzolara, H.‐J. Cantow, K. Diederichs, E. Keller, A. J. Domb, Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s, Macromolecules 1996, 29(1), 191–197.
35 35. D. Sawai, Y. Tsugane, M. Tamada, T. Kanamoto, M. Sungil, S.‐H. Hyon, Crystal density and heat of fusion for a stereo‐complex of poly(l‐lactic acid) and poly(d‐lactic acid), J. Polym. Sci. Part B Polym. Phys. 2007, 45(18), 2632–2639.
36 36. K. Tashiro, N. Kouno, H. Wang, H. Tsuji, Crystal structure of poly(lactic acid) stereocomplex: random packing model of PDLA and PLLA chains as studied by X‐ray diffraction analysis, Macromolecules 2017, 50(20), 8048–8065.
37 37. K. Tashiro, H. Wang, N. Kouno, J. Koshobu, K. Watanabe, Confirmation of the X‐ray‐analyzed heterogeneous distribution of the PDLA and PLLA chain stems in the crystal lattice of poly(lactic acid) stereocomplex on the basis of the vibrational circular dichroism IR spectral measurement, Macromolecules 2017, 50(20), 8066–8071.
38 38. M. Spinu, C. Jackson, M. Y. Keating, K. H. Gardner, Material design in poly(lactic acid) systems: block copolymers, star homo‐ and copolymers, and stereocomplexes, J. Macromol. Sci. Part A 1996, 33(10), 1497–1530.
39 39. Z. Kan, W. Luo, T. Shi, C. Wei, B. Han, D. Zheng, et al., Facile preparation of stereoblock PLA from ring‐opening polymerization of rac‐lactide by a synergetic binary catalytic system containing ureas and alkoxides, Front. Chem. 2018, 6, 547.
40 40. M. Hirata, K. Masutani, Y. Kimura, Synthesis of ABCBA penta stereoblock polylactide copolymers by two‐step ring‐opening polymerization of l‐ and d‐lactides with poly(3‐methyl‐1,5‐pentylene succinate) as macroinitiator (C): development of flexible stereocomplexed polylactide materials, Biomacromolecules 2013, 14(7), 2154–2161.
41 41. R. H. Platel, L. M. Hodgson, C. K. Williams, Biocompatible initiators for lactide polymerization, Polym. Rev. 2008, 48(1), 11–63.
42 42. M. J. Stanford, A. P. Dove, Stereocontrolled ring‐opening polymerisation of lactide, Chem. Soc. Rev. 2010, 39(2), 486–494.
43 43. C. M. Thomas, Stereocontrolled ring‐opening polymerization of cyclic esters: synthesis of new polyester microstructures, Chem. Soc. Rev. 2010, 39(1), 165–173.
44 44. C. P. Radano, G. L. Baker, M. R. Smith, Stereoselective polymerization of a racemic monomer with a racemic catalyst: direct preparation of the polylactic acid stereocomplex from racemic lactide, J. Am. Chem. Soc. 2000, 122(7), 1552–1553.
45 45. J. Hu, C. Kan, H. Wang, H. Ma, Highly active chiral oxazolinyl aminophenolate magnesium initiators for isoselective ring‐opening polymerization of rac‐lactide: dinuclearity induced enantiomorphic site control, Macromolecules 2018, 51(14), 5304–5312.
46 46. P. Marin, M. J.‐L. Tschan, F. Isnard, C. Robert, P. Haquette, X. Trivelli, et al., Polymerization of rac‐lactide using achiral iron complexes: access to thermally stable stereocomplexes, Angew. Chem. Int. Edn. 2019, 58(36), 12585–12589.
47 47. H. Tsuji, T. Tajima, Relatively short poly(d‐lactide) segments as intra‐crystallization‐accelerating moieties in stereo diblock poly(lactide)s, Macromol. Mater. Eng. 2014, 299(4), 430–435.
48 48. N. Yui, P. J. Dijkstra, J. Feijen, Stereo block copolymers of l‐ and d‐lactides, Makromol. Chem. 1990, 191(3), 481–488.
49 49. M. Hirata, K. Kobayashi, Y. Kimura, Synthesis and properties of high‐molecular‐weight stereo di‐block polylactides with nonequivalent d/l ratios, J. Polym. Sci. Part A Polym. Chem. 2010, 48(4), 794–801.
50 50. K. Masutani, C. W. Lee, Y. Kimura, Synthesis and thermomechanical properties of stereo triblock polylactides with nonequivalent block compositions, Macromol. Chem. Phys. 2012, 213(7), 695–704.
51 51. T. Rosen, I. Goldberg, V. Venditto, M. Kol, Tailor‐made stereoblock copolymers of poly(lactic acid) by a truly living polymerization catalyst, J. Am. Chem. Soc. 2016, 138(37), 12041–12044.
52 52. K. Masutani, C. W. Lee, Y. Kimura, Synthesis and properties of stereo di‐ and tri‐block polylactides of different block compositions by terminal Diels‐Alder coupling of poly‐l‐lactide and poly‐d‐lactide prepolymers, Polym. J. 2013, 45(4), 427–435.
53 53. K. Masutani, C. W. Lee, R. Kanki, H. Yamane, Y. Kimura, Reactive electrospinning of stereoblock polylactides prepared via spontaneous Diels‐Alder coupling of bis maleimide‐terminated poly‐l‐lactide and bis furan‐terminated poly‐d‐lactide, Sen'i Gakkaishi 2012, 68(3), 64–72.
54 54. K. Masutani, K. Kobayashi, Y. Kimura, C. W. Lee, Properties of stereo multi‐block polylactides obtained by chain‐extension of stereo tri‐block polylactides consisting of poly(l‐lactide) and poly(d‐lactide), J. Polym. Res. 2018, 25(3), 74.
55 55. X. Qiu, R. Liu, Y. Nie, Y. Liu, Z. Liang, J. Yang, et al., Monte Carlo simulations of stereocomplex formation in multiblock copolymers, Phys. Chem. Chem. Phys. 2019, 21(24), 13296–13303.
56 56. N. Sugai, H. Heguri, K. Ohta, Q. Meng, T. Yamamoto, Y. Tezuka, Effective click construction of bridged‐ and spiro‐multicyclic polymer topologies with tailored cyclic prepolymers (kyklo‐Telechelics), J. Am. Chem. Soc. 2010, 132(42), 14790–14802.
57 57. L. Han, Q. Xie, J. Bao, G. Shan, Y. Bao, P. Pan, Click chemistry synthesis, stereocomplex formation, and enhanced thermal properties of well‐defined poly(l‐lactic acid)‐b‐poly(d‐lactic acid) stereo diblock copolymers, Polym. Chem. 2017, 8(6), 1006–1016.
58 58. T. Isono, Y. Kondo, I. Otsuka, Y. Nishiyama, R. Borsali, T. Kakuchi, et al., Synthesis and stereocomplex formation of star‐shaped stereoblock polylactides consisting of poly(l‐lactide) and poly(d‐lactide) arms, Macromolecules 2013, 46(21), 8509–8518.
59 59. N. Sugai, T. Yamamoto, Y. Tezuka, Synthesis of orientationally isomeric cyclic stereoblock polylactides with head‐to‐head and head‐to‐tail linkages of the enantiomeric segments, ACS Macro Lett. 2012, 1(7), 902–906.
60 60. M. H. Rahaman, H. Tsuji, Synthesis and characterization of stereo multiblock poly(lactic acid)s with different block lengths by melt polycondensation of poly(l‐lactic acid)/poly(d‐lactic acid) blends, Macromol. React. Eng. 2012, 6(11), 446–457.
61 61. M. H. Rahaman, H. Tsuji, Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s: effects of block length, J. Appl. Polym. Sci. 2013, 129(5), 2502–2517.
62 62. K. Fukushima, Y. Furuhashi, K. Sogo, S. Miura, Y. Kimura, Stereoblock poly(lactic acid): synthesis via solid‐state polycondensation of a stereocomplexed mixture of poly(l‐lactic acid) and poly(d‐lactic acid), Macromol. Biosci. 2005, 5(1), 21–29.
63 63. K. Fukushima, M. Hirata, Y. Kimura, Synthesis and characterization of stereoblock poly(lactic acid)s with nonequivalent d/l sequence ratios, Macromolecules 2007, 40(9), 3049–3055.
64 64. K. Fukushima, Y. Kimura, An efficient solid‐state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight, J. Polym. Sci. Part A Polym. Chem. 2008, 46(11), 3714–3722.
65 65. T. Kanno, H. T. Oyama, S. Usugi, Effects of molecular weight and catalyst on stereoblock formation via solid state polycondensation of poly(lactic acid), Eur. Polym. J. 2014, 54, 62–70.
66 66. P. Purnama, Y. Jung, S. H. Kim, Stereocomplexation of poly(l‐lactide) and random copolymer poly(d‐lactide‐co‐ε‐caprolactone) to enhance melt stability, Macromolecules 2012, 45(9), 4012–4014.
67 67. M. Jikei, Y. Yamadoi, T. Suga, K. Matsumoto, Stereocomplex formation of poly(l‐lactide)‐poly(ε‐caprolactone) multiblock copolymers with poly(d‐lactide), Polymer 2017, 123, 73–80.
68 68. H. Tsuji, M. Yamasaki, Y. Arakawa, Stereocomplex formation between enantiomeric alternating lactic acid‐based copolymers as a versatile method for the preparation of high performance biobased biodegradable materials, ACS Appl. Polym. Mater. 2019, 1(6), 1476–1484.
69 69. H. Tsuji, S. Sato, N. Masaki, Y. Arakawa, A. Kuzuya, Y. Ohya, Synthesis, stereocomplex crystallization and homo‐crystallization of enantiomeric poly(lactic acid‐co‐alanine)s with ester and amide linkages, Polym. Chem. 2018, 9(5), 565–575.
70 70. N. Mulchandani, A. Gupta, K. Masutani, S. Kumar, S. Sakurai, Y. Kimura, et al., Effect of block length and stereocomplexation on the thermally processable poly(ε‐caprolactone) and poly(lactic acid) block copolymers for biomedical applications, ACS Appl. Polym. Mater. 2019, 1(12), 3354–3365.
71 71. N. Mulchandani, A. Prasad, V. Katiyar, Chapter 4—Resorbable polymers in bone repair and regeneration, in: V. Grumezescu, A. M. Grumezescu (Eds.), Materials for Biomedical Engineering, Elsevier, Amsterdam, 2019, pp. 87–125.
72 72. C. Garofalo, G. Capuano, R. Sottile, R. Tallerico, R. Adami, E. Reverchon, et al., Different insight into amphiphilic PEG‐PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake, Biomacromolecules 2014, 15(1), 403–415.
73 73. W. Zhang, D. Zhang, X. Fan, G. Bai, G. Yuming, Z. Hu, Stable stereocomplex micelles from Y‐shaped amphiphilic copolymers MPEG–(scPLA)2: preparation and characteristics. RSC Adv. 2016, 6(25), 20761–20771.
74 74. C. Feng, M. Piao, D. Li, Stereocomplex‐reinforced PEGylated polylactide micelle for optimized drug delivery, Polym. (Basel) 2016, 8(4), 165.
75 75. Y. Yu, J. Zou, L. Yu, W. Ji, Y. Li, W.‐C. Law, et al., Functional polylactide‐g‐paclitaxel–poly(ethylene glycol) by azide–alkyne click chemistry, Macromolecules 2011, 44(12), 4793–4800.
76 76. N. Mulchandani, A. Gupta, V. Katiyar, Polylactic acid‐based hydrogels and its renewable characters: tissue engineering applications, in: M. I. H. Mondal (Ed.), Cellulose‐Based Superabsorbent Hydrogels, Springer International Publishing, Cham, 2019, pp. 1537–1559.
77 77. S. Noack, D. Schanzenbach, J. Koetz, H. Schlaad, Polylactide‐based amphiphilic block copolymers: crystallization‐induced self‐assembly and stereocomplexation, Macromol. Rapid Commun. 2019, 40(1), 1800639.
78 78. C. Wang, N. Feng, F. Chang, J. Wang, B. Yuan, Y. Cheng, et al., Injectable cholesterol‐enhanced stereocomplex polylactide thermogel loading chondrocytes for optimized cartilage regeneration, Adv. Healthcare Mater. 2019, 8(14), 1900312.
79 79. Y. Sun, C. He, Synthesis and stereocomplex crystallization of poly(lactide)–graphene oxide nanocomposites, ACS Macro Lett. 2012, 1(6), 709–713.
80 80. A. Gupta, A. K. Pal, E. M. Woo, V. Katiyar, Effects of amphiphilic chitosan on stereocomplexation and properties of poly(lactic acid) nano‐biocomposite, Sci. Rep. 2018, 8(1), 4351.
81 81. A. Gupta, V. Katiyar, Cellulose functionalized high molecular weight stereocomplex polylactic acid biocomposite films with improved gas barrier, thermomechanical properties, ACS Sustain. Chem. Eng. 2017, 5(8), 6835–6844.
82 82. A. Gupta, A. Prasad, N. Mulchandani, M. Shah, M. Ravi Sankar, S. Kumar, et al., Multifunctional nanohydroxyapatite‐promoted toughened high‐molecular‐weight stereocomplex poly(lactic acid)‐based bionanocomposite for both 3D‐printed orthopedic implants and high‐temperature engineering applications, ACS Omega 2017, 2(7), 4039–4052.
83 83. Bioplastics MAGAZINE, “Total corbion PLA launches full stereocomplex PLA technology”, Polymedia Publisher GmbH, Mönchengladbach, Germany, Issue 03, May 2018
84 84. A. Greiner, J. H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chem. Int. Edn. 2007, 46(30), 5670–5703.
85 85. Y. Furuhashi, Y. Kimura, H. Yamane, Higher order structural analysis of stereocomplex‐type poly(lactic acid) melt‐spun fibers, J. Polym. Sci. Part B‐Polym. Phys. 2007, 45, 218–228.
86 86. M. Takasaki, H. Ito, T. Kikutani, Development of stereocomplex crystal of polylactide in high‐speed melt spinning and subsequent drawing and annealing processes, J. Macromol. Sci. Part B 2003, 42(3–4), 403–420.
87 87. M. Takasaki, H. Ito, T. Kikutani, Development of stereocomplex crystal of polylactide in high‐speed melt spinning and subsequent drawing and annealing processes, J. Macromol. Sci. Part B Phys. 2007, 42(3 & 4), 403–420.
88 88. D. Masaki, Y. Fukui, K. Toyohara, M. Ikegame, B. Nagasaka, H. Yamane, Stereocomplex formation in the poly(l‐lactic acid)/poly(d‐lactic acid) melt blends and the melt spun fibers, Sen'i Gakkaishi 2008, 64(8), 212–219.
89 89. B. Wang, B. Li, J. Xiong, C. Y. Li, Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization, Macromolecules 2008, 41(24), 9516–9521.
90 90. S. Boi, L. Pastorino, O. Monticelli, Multi applicable stereocomplex PLA particles decorated with cyclodextrins, Mater. Lett. 2019, 250, 135–138.
91 91. O. Monticelli, M. Putti, L. Gardella, D. Cavallo, A. Basso, M. Prato, et al., New stereocomplex PLA‐based fibers: effect of POSS on polymer functionalization and properties, Macromolecules 2014, 47(14), 4718–4727.
92 92. S. Regnell Andersson, M. Hakkarainen, S. Inkinen, A. Södergård, A.‐C. Albertsson, Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures, Biomacromolecules 2012, 13(4), 1212–1222.
93 93. C. Zhu, W. Jiang, J. Hu, P. Sun, A. Li, Q. Zhang, Polylactic acid nonwoven fabric surface modified with stereocomplex crystals for recyclable use in oil/water separation, ACS Appl. Polym. Mater. 2020, 2(7), 2509–2516.
94 94. N. J. Kaiser, K. L. K. Coulombe, Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration, Biomed. Mater. 2015, 10(3), 034003.
95 95. P. Mogha, A. Srivastava, S. Kumar, S. Das, S. Kureel, A. Dwivedi, et al., Hydrogel scaffold with substrate elasticity mimicking physiological‐niche promotes proliferation of functional keratinocytes, RSC Adv. 2019, 9(18), 10174–10183.
96 96. X. Zhao, H. Hu, X. Wang, X. Yu, W. Zhou, S. Peng, Super tough poly(lactic acid) blends: a comprehensive review, RSC Adv. 2020, 10(22), 13316–13368.
97 97. H. Liu, J. Zhang, Research progress in toughening modification of poly(lactic acid), J. Polym. Sci. Part B Polym. Phys. 2011, 49(15), 1051–1083.
98 98. F. Wu, M. Misra, A. K. Mohanty, Super toughened poly(lactic acid)‐based ternary blends via enhancing interfacial compatibility, ACS Omega 2019, 4(1), 1955–1968.
99 99. Y. Kang, P. Chen, X. Shi, G. Zhang, C. Wang, Preparation of open‐porous stereocomplex PLA/PBAT scaffolds and correlation between their morphology, mechanical behavior, and cell compatibility, RSC Adv. 2018, 8(23), 12933–12943.
100 100. N. Mulchandani, K. Masutani, S. Kumar, H. Yamane, S. Sakurai, Y. Kimura, et al., Toughened PLA‐b‐PCL‐b‐PLA triblock copolymer based biomaterials: effect of self‐assembled nanostructure and stereocomplexation on the mechanical properties, Polym. Chem. 2021, 12(26), 3806–3824.