Читать книгу Poly(lactic acid) - Группа авторов - Страница 148

REFERENCES

Оглавление

1 1. S. Iannace, L. Nicolais, Isothermal crystallization and chain mobility of poly(l‐lactide), J. Appl. Polym. Sci. 1997, 64, 911–919.

2 2. G. Kokturk, E. Piskin, T. F. Serhatkulu, M. Cakmak, Evolution of phase behavior and orientation in uniaxially deformed polylactic acid films, Polym. Eng. Sci. 2002, 42, 1619–1628.

3 3. J. Hu, T. Zhang, M. Gu, X. Chen, J. Zhang, Spectroscopic analysis on cold drawing‐induced PLLA mesophase, Polymer 2012, 53, 4922–4926.

4 4. J. Zhang, Y. Duan, A. J. Domb, Y. Ozaki, PLLA mesophase and its phase transition behavior in the PLLA−PEG−PLLA copolymer as revealed by infrared spectroscopy, Macromolecules 2010, 43, 4240–4246.

5 5. K. Wasanasuk, K. Tashiro, Structural regularization in the crystallization process from the glass or melt of poly(l‐lactic acid) viewed from the temperature‐dependent and time‐resolved measurements of FTIR and wide‐angle/small‐angle X‐ray scatterings, Macromolecules 2011, 44, 9650–9660.

6 6. J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, Y. Ozaki, Crystal modifications and thermal behavior of poly(l‐lactic acid) revealed by infrared spectroscopy, Macromolecules 2005, 38, 8012–8021.

7 7. J. Zhang, K. Tashiro, A. J. Domb, H. Tsuji, Confirmation of disorder α form of poly(l‐lactic acid) by the X‐ray fiber pattern and polarized IR/Raman spectra measured for uniaxially‐oriented samples, Macromol Symp 2006, 242, 274–278.

8 8. J. Zhang, K. Tashiro, H. Tsuji, A. J. Domb, Disorder‐to‐order phase transition and multiple melting behavior of poly(l‐lactide) investigated by simultaneous measurements of WAXD and DSC, Macromolecules 2008, 41, 1352–1357.

9 9. K. Wasanasuk, K. Tashiro, Crystal structure and disorder in poly(l‐lactic acid) δ form (α′ form) and the phase transition mechanism to the ordered α form, Polymer 2011, 52, 6097–6109.

10 10. X. Chen, J. Kalish, S. L. Hsu, Structure evolution of α′‐phase poly(lactic acid), J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1446–1454.

11 11. J. Kobayashi, T. Asahi, M. Ichiki, H. Oikawa, H. Suzuki, T. Watanabe, E. Fukada, Y. Shikinami, Structural and optical properties of poly lactic acids, J. Appl. Phys. 1995, 77, 2957–2973.

12 12. C. Aleman, B. Lotz, J. Puiggali, Crystal structure of the α‐form of poly (l‐lactide), Macromolecules 2001, 34, 4795–4801.

13 13. S. Sasaki, T. Asakura, Helix distortion and crystal structure of the α‐form of poly(l‐lactide), Macromolecules 2003, 36, 8385–8390.

14 14. K. Wasanasuk, K. Tashiro, M. Hanesaka, T. Ohhara, K. Kurihara, R. Kuroki, et al., Crystal structure analysis of poly(l‐lactic acid) α form on the basis of the 2‐dimensional wide‐angle synchrotron X‐ray and neutron diffraction measurements, Macromolecules 2011, 44, 6441–6452.

15 15. P. De Santis, J. Kovacs, Molecular conformation of poly (S‐lactic acid), Biopolymers 1968, 6, 299–306.

16 16. B. Eling, S. Gogolewski, A. J. Pennings. Biodegradable materials of poly(l‐lactic acid): 1. Melt‐spun and solution‐spun fibres, Polymer 1982, 23, 1587–1593.

17 17. W. Hoogsteen, A. Postema, Crystal structure, conformation and morphology of solution‐spun poly (l‐lactide) fibers, Macromolecules 1990, 23, 634–642.

18 18. J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okihara, B. Lotz, The frustrated structure of poly (l‐lactide), Polymer 2000, 41, 8921–8930.

19 19. K. Takahashi, D. Sawai, T. Yokoyama, T. Kanamoto, S. H. Hyon, Crystal transformation from the α‐ to the β‐form upon tensile drawing of poly(l‐lactic acid). Polymer 2004, 45, 4969–4976.

20 20. H. Wang, J. Zhang, K. Tashiro, Phase transition mechanism of poly(l‐lactic acid) among the α, δ and β forms on the basis of the reinvestigated crystal structure of the β form, Macromolecules 2017, 50, 3285–3300.

21 21. L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Epitaxial crystallization and crystalline polymorphism of polylactides, Polymer 2000, 41, 8909–8919.

22 22. B. Lotz, G. Li, X. Chen, J. Puiggali, Crystal polymorphism of polylactides and poly(pro‐alt‐CO): The metastable beta and gamma phases. Formation of homochiral PLLA phases in the PLLA/PDLA blends, Polymer 2017, 115, 204–210.

23 23. H. Marubayashi, S. Asai, M. Sumita, Guest‐induced crystal‐to‐crystal transitions of poly(l‐lactide) complexes, J. Phys. Chem. B 2013, 117, 385–397.

24 24. H. Marubayashi, S. Asai, M. Sumita, Crystal structures of poly(l‐lactide)–CO2 complex and its emptied form, Polymer 2012, 53, 4262–4271.

25 25. H. Marubayashi, S. Asai, M. Sumita, Complex crystal formation of poly(l‐lactide) with solvent molecules, Macromolecules 2012, 45, 1384–1397.

26 26. H. Marubayashi, S. Akaishi, S. Akasaka, S. Asai, M. Sumita, Crystalline structure and morphology of poly(l‐lactide) formed under high‐pressure CO2, Macromolecules 2008, 41, 9192–9203.

27 27. Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Stereocomplex formation between enantiomeric poly(lactides), Macromolecules 1987, 20, 904–906.

28 28. T. Okihara, Lattice disorders in the stereocomplex and of poly(l‐lactide), Bull. Inst. Chem. Res. Kyoto Univ. 1988, 66, 271–282.

29 29. H. Tsuji, Y. Ikada, S. H. Hyon, Y. Kimura, T. Kitao, Stereocomplex formation between enantiomeric poly(lactic acid). VIII. Complex fibers spun from mixed solution of poly(d‐lactic acid) and poly(l‐lactic acid), J. Appl. Polym. Sci. 1994, 51, 337–344.

30 30. H. Tsuji, S. H. Hyon, Y. Ikada, Stereocomplex formation between enantiomeric poly (lactic acid)s. 4. Differential scanning calorimetric studies on precipitates from mixed solutions of poly (d‐lactic acid) and poly (l‐lactic acid), Macromolecules 1991, 24, 5657–5662.

31 31. H. Tsuji, F. Horii, S. H. Hyon, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions, Macromolecules 1991, 24, 2719–2724.

32 32. H. Tsuji, S. H. Hyon, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 3. Calorimetric studies on blend films cast from dilute solution, Macromolecules 1991, 24, 5651–5656.

33 33. T. Okihara, M. Tsuji, A. Kawaguchi, I. Katayama, H. Tsuji, S. H. Hyon, Y. Ikada, Crystal structure of stereocomplex of poly(l‐lactide) and poly(d‐lactide), J. Macromol. Sci. Part B Phys. 1991, B30, 119–140.

34 34. H. Tsuji, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactid acid)s. 6. Binary blends from copolymers, Macromolecules 1992, 25, 5719–5723.

35 35. H. Fumitaka, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high‐resolution solid‐state, Macromolecules 1992, 25, 4114–4118.

36 36. H. Tsuji, S. Hyon, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution, Macromolecues 1992, 25, 2940–2946.

37 37. H. Tsuji, Y. Ikada, Stereocomplex formation between enantiomeric poly (lactic acids). 9. Stereocomplexation from the melt, Macromolecules 1993, 26, 6918–6926.

38 38. P. Pan, Y. Inoue, Polymorphism and isomorphism in biodegradable polyesters, Prog. Polym. Sci. 2009, 34, 605–640.

39 39. H. Tian, Z. Tang, X. Zhuang, X. Chen, X. Jing, Biodegradable synthetic polymers: preparation, functionalization and biomedical application, Prog. Polym. Sci. 2012, 37, 237–280.

40 40. H. Nakajima, P. Dijkstra, K. Loos, The recent developments in biobased polymers toward general and engineering applications: polymers that are upgraded from biodegradable polymers, analogous to petroleum‐derived polymers, and newly developed, Polymers 2017, 9, 523.

41 41. B. Lotz, Crystal polymorphism and morphology of polylactides, in: M. DiLorenzo and R. Androsch Synthesis, Structure and Properties of Poly(Lactic Acid), Springer, Cham, 2017. https://doi.org/10.1007/12_2016_15.

42 42. D. Sawai, K. Takahashi, T. Imamura, K. Nakamura, T. Kanamoto, S. H. Hyon, Preparation of oriented β‐form poly(l‐lacic acid) by solid state extrusion, J. Polym. Sci. Part B Polym. Phys. 2002, 40, 95–104.

43 43. D. Sawai, K. Takahashi, A. Sasashige, T. Kanamoto, Preparation of oriented β‐form poly(l‐lactic acid) by solid‐state coextrusion: effect of extrusion variables, Macromolecules 2003, 36, 3601–3605.

44 44. D. Sawai, T. Yokoyama, T. Kanamoto, M. Sungil, S. H. Hyon, L. P. Myasnikova, Crystal transformation and development of tensile properties upon drawing of poly(l‐lactic acid) by solid‐state coextrusion: effects of molecular weight, Macromol. Symp. 2006, 242, 93–103.

45 45. J. F. Ru, S. G. Yang, D. Zhou, H. M. Yin, J. Lei, Z. M. Li, Dominant β‐form of poly(l‐lactic acid) obtained directly from melt under shear and pressure fields, Macromolecules 2016, 49, 3826–3837.

46 46. K. Tashiro, N. Kouno, H. Wang, H. Tsuji, Crystal structure of poly(lactic acid) stereocomplex: random packing model of PDLA and PLLA chains as studied by X‐ray diffraction analysis, Macromolecules 2017, 50, 8048–8065.

47 47. K. Tashiro, H. Wang, N. Kouno, J. Koshobu, K. Watanabe, Confirmation of the X‐ray‐analyzed heterogeneous distribution of the PDLA and PLLA chain stems in the crystal lattice of poly(lactic acid) stereocomplex on the basis of the vibrational circular dichroism IR spectral measurement, Macromolecules 2017, 50, 8066–8071.

48 48. K. Aou, S. L. Hsu, Trichroic vibrational analysis on the α‐form of poly (lactic acid) crystals using highly oriented fibers and spherulites, Macromolecules 2006, 39, 3337–3344.

49 49. R. J. Roe, Methods of X‐Ray and Neutron Scattering in Polymer Science, Oxford University Press Inc., New York, 2000.

50 50. M. L. Di Lorenzo, Crystallization behavior of poly(l‐lactic acid), Eur. Polym. J. 2005, 41, 569–575.

51 51. M. Yasuniwa, S. Tsubakihara, Y. Sugimoto, C. Nakafuku, Thermal analysis of the double‐melting behavior of poly(l‐lactic acid), J. Polym. Sci. Part B Polym. Phys. 2004, 42, 25–32.

52 52. A. L. Patterson, The scherrer formula for X‐ray particle size determination, Phys. Rev. 1939, 56, 978–982.

53 53. T. Hahn (Ed.), International Tables for Crystallography‐Vol. A Space Group Symmetry, 5th edition, Springer, Dordrecht, 2005.

54 54. G. Stoclet, R. Seguela, J. M. Lefebvre, S. Elkoun, C. Vanmansart, Strain‐induced molecular ordering in polylactide upon uniaxial stretching, Macromolecules 2010, 43, 1488–1498.

55 55. G. Stoclet, R. Seguela, J. M. Lefebvre, C. Rochas, New insights on the strain‐induced mesophase of poly(d,l‐lactide): in situ WAXS and DSC study of the thermo‐mechanical stability, Macromolecules 2010, 43, 7228–7237.

56 56. K. Tashiro, S. Sasaki, Structural changes in the ordering process of polymers as studied by an organized combination of the various measurement techniques, Prog. Polym. Sci. 2003, 28, 451–519.

57 57. M. L. Di Lorenzo, Determination of spherulite growth rates of poly(l‐lactic acid) using combined isothermal and non‐isothermal procedures, Polymer 2001, 42, 9441–9446.

58 58. H. Tsuji, Y. Ikada, Properties and morphologies of poly(l‐lactide): 1. Annealing condition effects on properties and morphologies of poly(l‐lactide), Polymer 1995, 36, 2709–2716.

59 59. H. Tsuji, Y. Tezuka, S. K. Saha, M. Suzuki, S. Itsuno, Spherulite growth of l‐lactide copolymers: effects of tacticity and comonomers, Polymer 2005, 46, 4917–4927.

60 60. H. M. De Oca, I. M. Ward, Structure and mechanical properties of poly(l‐lactic acid) crystals and fibers, J. Polym. Sci. Part B Polym. Phys., 2007, 45, 892–902.

61 61. L. R. G. Treloar, Calculations of elastic moduli of polymer crystals: 1. Polyethlene and nylon 66, Polymer 1960, 1, 95–103.

62 62. T. Shimanouchi, M. Asahina, S. Enomoto, Elastic moduli of oriented polymers. I. The simple helix, polyethylene, polytetrafluoroethylene, and a general formula, J. Polym. Sci. 1962, 59, 93–100.

63 63. H. Sugeta, T. Miyazawa, A General method for calculating elastic moduli of helical polymer chains in crystals; application to poly(oxymethylene), Polym. J. 1970, 1, 226–231.

64 64. A. Odajima, T. Maeda, Calculation of the elastic constants and the lattice energy of the polyethylene crystal, J. Polym. Sci. Part C Polym. Symp. 2007, 15, 55–74.

65 65. D. N. Theodorou, U. W. Suter, Atomistic modeling of mechanical properties of polymeric glasses, Macromolecules 1986, 19, 139.

66 66. K. Wasanasuk, K. Tashiro, Theoretical and experimental evaluation of crystallite moduli of various crystalline forms of poly(l‐lactic acid), Macromolecules 2012, 45, 7019–7026.

67 67. K. Tashiro, Molecular theory of mechanical properties of crystalline polymers, Prog. Polym. Sci. 1993, 18, 377.

68 68. K. Tashiro, M. Kobayashi, H. Tadokoro, Calculation of three‐dimensional elastic constants of polymer crystals. 1. Method of calculation, Macromolecules 1978, 11, 908–913.

69 69. K. Tashiro, M. Kobayashi, H. Tadokoro, Three‐dimensional elastic constants of polymer crystals. 2. Application to orthorhombic polyethylene and poly(vinyl alcohol), Macromolecules 1978, 914–918.

70 70. K. Tashiro, M. Hanesaka, T. Ohhara, T. Ozeki, T. Kitano, T. Nishu, K. Kurihara, T. Tamada, R. Kuroki, S. Fujiwara, I. Tanaka, N. Niimura, Structural refinement and extraction of hydrogen atomic positions in polyoxymethylene crystal based on the first successful measurements of 2‐dimensional high‐energy synchrotron X‐ray diffraction and wide‐angle neutron diffraction patterns of hydrogenated, Polym. J. 2007, 39, 1253–1273.

71 71. K. Tashiro, M. Kobayashi, H. Tadokoro, Vibrational spectra and theoretical three‐dimensional elastic constants of isotactic polypropylene crystal. An important role of anharmonic vibrations, Polym J 1992, 24, 899.

72 72. K. Tashiro, A role of taut tie chains in the heterogeneous stress distribution and mechanical deformation behavior of synthetic and natural fibers, J. Fiber Sci. Technol. 2021, 77, 88–117.

73 73. S. Lee, M. Kimoto, M. Tanaka, H. Tsuji, T. Nishino, Crystal modulus of poly (lactic acid)s, and their stereocomplex, Polymer 2018, 138, 124–131.

74 74. D. Brizzolara, H. J. Cantow, K. Diederichs, E. Keller, A. J. Domb, Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s, Macromolecules 1996, 29, 191–197.

75 75. L. Cartier, T. Okihara, B. Lotz, Triangular polymer single crystals: stereocomplexes, twins, and frustrated structures, Macromolecules 1997, 30, 6313–6322.

76 76. X. Wang, R. Prud’homme, Dendritic crystallization of poly(l‐lactide)/poly(d‐lactide) stereocomplexes in ultrathin films, Macromolecules 2014, 47, 668–676.

77 77. H. Tsuji, Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications, Macromol. Biosci. 2005, 5, 569–597.

78 78. H. Tsuji, Poly(lactic acid) stereocomplexes: a decade of progress, Adv. Drug. Deliv. Rev. 2016, 107, 97–135.

79 79. M. Yokouchi, Y. Chatani, H. Tadokoro, K. Teranishi, H. Tani, Structural studies of polyesters: 5. Molecular and crystal structures of optically active and racemic poly(β‐hydroxybutyrate), Polymer 1973, 14, 267.

80 80. H. Wang, K. Tashiro, Reinvestigation of crystal Structure and intermolecular interactions of biodegradable poly(3‐hydroxybutyrate) α‐form and the prediction of its mechanical property, Macromolecules 2016, 49, 581–594.

81 81. S. Phongtamrug, K. Tashiro, X‐ray crystal structure analysis of poly(3‐hydroxybutyrate) β‐form, Macromolecules 2019, 52, 2995–3009.

82 82. H. Sato, R. Murakami, A.Padermshoke, F. Hirose, K. Senda, I. Noda, Y. Ozaki, Infraredspectroscopy studies of CH⋯O hydrogen bondings and thermal behavior ofbiodegradable poly(hydroxyalkanoate), Macromolecules 2004, 37, 7203–7213.

83 83. T. Iwata, Y. Aoyagi, T. Tanaka, M. Fujita, A. Takeuchi, Y. Suzuki, K. Uesugi, Microbeam X‐ray diffraction and enzymatic degradation of poly [(R)‐3‐hydroxybutyrate] fibers with two kinds of molecular conformations, Macromolecules 2006, 39, 5789–5795.

84 84. M. C. Righetti, Amorphous fractions of poly(lactic acid), in: M. L. Di Lorenzo, R. Androsch (Eds.), Synthesis, Structure and Properties of Poly(Lactic Acid), Advances in Polymer Science, vol. 279, Springer, Berlin, 2017.

85 85. M. L. Di Lorenzo, M. C. Righetti, Crystallization‐induced formation of rigid amorphous fraction, Polym. Cryst. 2018, e10023.

86 86. S. N. Zhurkov, V. A. Zakrevskyi, V. E. Korsukov, Mechanism of submicrocrack generation in stressed polymers, J. Polym. Sci. Part 2 1972, 10, 1509–1520.

87 87. C. S. Fuller, C. L. Erickson, An X‐ray study of some linear polyesters, J. Am. Chem. Soc. 1937, 59, 344–351.

88 88. A. Turner‐Jones, C. W. Bunn, The crystal structure of polyethylene adipate and polyethylene suberate, Acta Crystallogr. 1962, 15, 105–113.

89 89. S. Y. Hobbs, F. W. J. Billmeyer, Crystal unit‐cell dimensions and densities of linear aliphatic polyesters, J. Polym. Sci. Part A‐2 1969, 7, 1119–1121.

90 90. K. Tashiro, T. Yoshioka, H. Yamamoto, H. Wang, E. M. Woo, K. Funaki, H. Murase, Relationship between twisting phenomenon and structural discontinuity of stacked lamellae in the spherulite of poly(ethylene adipate) as studied by the synchrotron X‐ray microbeam technique, Polym. J. 2018, 9–12.

Poly(lactic acid)

Подняться наверх