Читать книгу Sustainable Nanotechnology - Группа авторов - Страница 74

References

Оглавление

1 1 Eason, T., Meyer, D.E., Curran, M.A., and Upadhyayula, V.K. (2011). Guidance to facilitate decisions for sustainable nanotechnology.

2 2 Wiek, A., Foley, R.W., and Guston, D.H. (2014). Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems? In: Nanotechnology for Sustainable Development (ed. M.S. Diallo, N.A. Fromer and M.S. Jhon). Cham: Springer International Publishing.

3 3 Hutchison, J.E. (2016). The road to sustainable nanotechnology: challenges, progress and opportunities. ACS Sustainable Chemistry & Engineering 4 (11): 5907–5914.

4 4 Falsini, S., Bardi, U., Abou‐Hassan, A., and Ristori, S. (2018). Sustainable strategies for large‐scale nanotechnology manufacturing in the biomedical field. Green Chemistry 20 (17): 3897–3907.

5 5 Roco, M.C. (2005). Environmentally responsible development of nanotechnology. Environmental Science & Technology 39 (5): 106A–112A.

6 6 Brinker, C.J. and Ginger, D. (2011). Nanotechnology for sustainability: energy conversion, storage, and conservation. In: Nanotechnology Research Directions for Societal Needs in 2020, 261–303. Springer.

7 7 Sohail, M.I., Waris, A.A., Ayub, M.A. et al. (2019). Environmental application of nanomaterials: a promise to sustainable future. Comprehensive Analytical Chemistry 87: 1–54.

8 8 Li, C. and Yue, Y. (2014). Fluorescence spectroscopy of graphene quantum dots: temperature effect at different excitation wavelengths. Nanotechnology 25 (43): 435703.

9 9 Iavicoli, I., Leso, V., Ricciardi, W. et al. (2014). Opportunities and challenges of nanotechnology in the green economy. Environmental Health 13: 78.

10 10 Cui, Q., Hernandez, R., Mason, S.E. et al. (2016). Sustainable nanotechnology: opportunities and challenges for theoretical/computational studies. The Journal of Physical Chemistry B 120 (30): 7297–7306.

11 11 Allianz‐Aktiengesellschaft. (2005). Opportunities and risks of nanotechnologies: report in Co‐operation with the OECD International Futures Programme. Allianz Center for Technology.

12 12 Yuliarto, B., Septiani, N.L.W., Kaneti, Y.V. et al. (2019). Green synthesis of metal oxide nanostructures using naturally occurring compounds for energy, environmental, and bio‐related applications. New Journal of Chemistry 43 (40): 15846–15856.

13 13 Almosni, S., Delamarre, A., Jehl, Z. et al. (2018). Material challenges for solar cells in the twenty‐first century: directions in emerging technologies. Science and Technology of Advanced Materials 19 (1): 336–369.

14 14 Nozik, A.J., Beard, M.C., Luther, J.M. et al. (2010). Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third‐generation photovoltaic solar cells. Chemical Reviews 110 (11): 6873–6890.

15 15 Oh, J., Yuan, H.‐C., and Branz, H.M. (2012). An 18.2%‐efficient black‐silicon solar cell achieved through control of carrier recombination in nanostructures. Nature Nanotechnology 7 (11): 743–748.

16 16 Garnett, E. and Yang, P. (2010). Light trapping in silicon nanowire solar cells. Nano Letters 10 (3): 1082–1087.

17 17 Ghernaout, D., Alghamdi, A., Touahmia, M. et al. (2018). Nanotechnology phenomena in the light of the solar energy. Journal of Energy, Environmental & Chemical Engineering 3: 1–8.

18 18 Sharma, P. and Bhargava, M. (2013). Applications and characteristics of nanomaterials in industrial environment. Research and Development (IJCSEIERD) 3 (4): 63–72.

19 19 Ray, P.C., Yu, H., and Fu, P.P. (2009). Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews 27 (1): 1–35.

20 20 Gatoo, M.A., Naseem, S., Arfat, M.Y. et al. (2014). Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Research International 2014: 1–8.

21 21 Bar‐Ilan, O., Louis, K.M., Yang, S.P. et al. (2012). Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology 6 (6): 670–679.

22 22 Bar‐Ilan, O., Chuang, C.C., Schwahn, D.J. et al. (2013). TiO2 nanoparticle exposure and illumination during zebrafish development: mortality at parts per billion concentrations. Environmental Science & Technology 47 (9): 4726–4733.

23 23 De Jong, W.H., Hagens, W.I., Krystek, P. et al. (2008). Particle size‐dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29 (12): 1912–1919.

24 24 Donaldson, K. and Stone, V. (2003). Current hypotheses on the mechanisms of toxicity of ultrafine particles. Annali dell'Istituto Superiore di Sanità 39 (3): 405–410.

25 25 Gurr, J.‐R., Wang, A.S.S., Chen, C.‐H., and Jan, K.‐Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213 (1): 66–73.

26 26 Asgharian, B. and Price, O.T. (2007). Deposition of ultrafine (NANO) particles in the human lung. Inhalation Toxicology 19 (13): 1045–1054.

27 27 Guo, C., Wang, J., Jing, L. et al. (2018). Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environmental Pollution 236: 926–936.

28 28 Krzysztof, S., Magdalena, C., Magdalena, M.‐K. et al. (2019). Toxicity of metallic nanoparticles in the central nervous system. Nanotechnology Reviews 8 (1): 175–200.

29 29 Cao, Y. (2018). The toxicity of nanoparticles to human endothelial cells. Adv. Exp. Med. Biol. 1048: 59–69.

30 30 Hannon, G., Lysaght, J., Liptrott, N.J., and Prina‐Mello, A. (2019). Immunotoxicity considerations for next generation cancer nanomedicines. Advanced Science 6 (19): 1900133.

31 31 Chen, L., Liu, J., Zhang, Y. et al. (2018). The toxicity of silica nanoparticles to the immune system. Nanomedicine 13 (15): 1939–1962.

32 32 Nel, A., Xia, T., Mädler, L., and Li, N. (2006). Toxic potential of materials at the nanolevel. Science 311 (5761): 622–627.

33 33 Yin, H., Too, H.P., and Chow, G.M. (2005). The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26 (29): 5818–5826.

34 34 Gupta, A.K. and Gupta, M. (2005). Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26 (13): 1565–1573.

35 35 Sayes, C.M., Fortner, J.D., Guo, W. et al. (2004). The differential cytotoxicity of water‐soluble fullerenes. Nano Letters 4 (10): 1881–1887.

36 36 Verma, A. and Stellacci, F. (2010). Effect of surface properties on nanoparticle–cell interactions. Small 6 (1): 12–21.

37 37 Ispas, C., Andreescu, D., Patel, A. et al. (2009). Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environmental Science & Technology 43 (16): 6349–6356.

38 38 Champion, J.A. and Mitragotri, S. (2006). Role of target geometry in phagocytosis. Proceedings of the National Academy of Sciences of the United States of America 103 (13): 4930–4934.

39 39 Lee, M.‐K., Lim, S.‐J., and Kim, C.‐K. (2007). Preparation, characterization and in vitro cytotoxicity of paclitaxel‐loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28 (12): 2137–2146.

40 40 Kim, S.T., Chompoosor, A., Yeh, Y.‐C. et al. (2012). Dendronized gold nanoparticles for siRNA delivery. Small 8 (21): 3253–3256.

41 41 Griffitt, R.J., Luo, J., Gao, J. et al. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry 27 (9): 1972–1978.

42 42 Meng, H., Chen, Z., Xing, G. et al. (2007). Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano‐copper particles. Toxicology Letters 175 (1): 102–110.

43 43 Bahadar, H., Maqbool, F., Niaz, K., and Abdollahi, M. (2016). Toxicity of nanoparticles and an overview of current experimental models. Iranian Biomedical Journal 20 (1): 1–11.

44 44 Türk, M. and Erkey, C. (2018). Synthesis of supported nanoparticles in supercritical fluids by supercritical fluid reactive deposition: current state, further perspectives and needs. The Journal of Supercritical Fluids 134: 176–183.

45 45 Karn, B. and Sadik, O. (2013). Sustainability and nanotechnology. ACS Sustainable Chemistry & Engineering 1 (7): 685.

46 46 Sartor, D., Piette, M.A., Tschudi, W., and Fok, S. (2000). Strategies for Energy benchmarking in Cleanrooms and Laboratory‐type Facilities. Berkeley, CA: Lawrence Berkeley National Lab.

47 47 Cloete, T.E. (2010). Nanofiltration for water and wastewater treatment. In: Nanotechnology in Water Treatment Applications (ed. I. Koyuncu and M. Cakmakci). Caister Academic Press.

48 48 Swaminathan, V.V., Gibson, L.R., Pinti, M. et al. (ed.) (2014). Ionic transport in nanocapillary membrane systems. In: Nanotechnology for Sustainable Development, 2014e. Cham: Springer International Publishing.

49 49 Park, S.‐J., Cheedrala, R.K., Diallo, M.S. et al. (2012). Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks. Journal of Nanoparticle Research14 : 884.

50 50 Ali, I. (2012). New generation adsorbents for water treatment. Chemical Reviews 112 (10): 5073–5091.

51 51 Kunduru, K.R., Nazarkovsky, M., Farah, S. et al. (2017). 2 ‐ Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. In: Water Purification (ed. A.M. Grumezescu), 33–74. Academic Press.

52 52 Roselli, M., Finamore, A., Garaguso, I. et al. (2003). Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. The Journal of Nutrition 133 (12): 4077–4082.

53 53 Kashyap, P.L., Xiang, X., and Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules 77: 36–51.

54 54 Bratovčić, A., Odobašić, A., Ćatić, S., and Šestan, I. (2015). Application of polymer nanocomposite materials in food packaging. Croatian Journal of Food Science and Technology 7 (2): 86–94.

55 55 Fernandez, A., Torres‐Giner, S., and Lagaron, J.M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids 23 (5): 1427–1432.

56 56 Dekkers, S., Krystek, P., Peters, R.J.B. et al. (2011). Presence and risks of nanosilica in food products. Nanotoxicology 5 (3): 393–405.

57 57 Mozafari, M.R., Flanagan, J., Matia‐Merino, L. et al. (2006). Recent trends in the lipid‐based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture 86 (13): 2038–2045.

58 58 Flores‐López, M.L., Cerqueira, M.A., de Rodríguez, D.J., and Vicente, A.A. (2016). Perspectives on utilization of edible coatings and nano‐laminate coatings for extension of postharvest storage of fruits and vegetables. Food Engineering Reviews 8 (3): 292–305.

59 59 Sahdev, P., Ochyl, L.J., and Moon, J.J. (2014). Biomaterials for nanoparticle vaccine delivery systems. Pharmaceutical Research 31 (10): 2563–2582.

60 60 Liu, Y., Wang, F.‐Q., Shah, Z. et al. (2016). Nano‐polyplex based on oleoyl‐carboxymethyl‐chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Colloids and Surfaces. B, Biointerfaces 145: 492–501.

61 61 Kah, M. and Hofmann, T. (2014). Nanopesticide research: current trends and future priorities. Environment International 63: 224–235.

62 62 Barik, T.K., Sahu, B., and Swain, V. (2008). Nanosilica—from medicine to pest control. Parasitology Research 103 (2): 253.

63 63 Zhang, J., Brown, G., Fu, J. et al. (2020). Nanobiopesticides: silica nanoparticles with spiky surfaces enable dual adhesion and enhanced performance. EcoMat 2 (2): e12028.

64 64 Baglioni, P. and Chelazzi, D. (2013). Nanoscience for the Conservation of Works of Art. Royal Society of Chemistry.

65 65 Kolman, K., Nechyporchuk, O., Persson, M. et al. (2018). Combined nanocellulose/nanosilica approach for multiscale consolidation of painting canvases. ACS Applied Nano Materials 1 (5): 2036–2040.

66 66 Diallo, M. and Brinker, C.J. (2011). Nanotechnology for sustainability: environment, water, food, minerals, and climate. In: Nanotechnology Research Directions for Societal Needs in 2020: Science Policy Reports, 221–259. Dordrecht: Springer.

67 67 Hellmann, C., Greiner, A., and Wendorff, J.H. (2011). Design of pheromone releasing nanofibers for plant protection. Polymers for Advanced Technologies 22 (4): 407–413.

68 68 Ponmurugan, P., Manjukarunambika, K., Elango, V., and Gnanamangai, B.M. (2016). Antifungal activity of biosynthesised copper nanoparticles evaluated against red root‐rot disease in tea plants. Journal of Experimental Nanoscience 11 (13): 1019–1031.

69 69 Kim, S. and Lee, Y.M. (2014). Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation. In: Nanotechnology for Sustainable Development, 2014e (ed. M.S. Diallo, N.A. Fromer and M.S. Jhon). Cham, Cham: Springer.

70 70 Baker, R.W. (2002). Future directions of membrane gas separation technology. Industrial and Engineering Chemistry Research 41 (6): 1393–1411.

71 71 Idem, R., Wilson, M., Tontiwachwuthikul, P. et al. (2006). Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the Boundary Dam CO2 capture demonstration plant. Industrial & Engineering Chemistry Research 45 (8): 2414–2420.

72 72 Liou, T.‐H. (ed.) (2014). Recovery of silica from electronic waste for the synthesis of cubic MCM‐48 and its application in preparing ordered mesoporous carbon molecular sieves using a green approach. In: Nanotechnology for Sustainable Development, 2014e. Cham: Springer International Publishing.

73 73 Qureshi, A., Singh, D., and Dwivedi, S. (2018). Nano‐fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences 7 (2): 3325–3335.

74 74 Singh, N., Amist, N., Yadav, K. et al. (2013). Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing 3 (4): 353–364.

Sustainable Nanotechnology

Подняться наверх