Читать книгу Metaheuristics for Robotics - Hamouche Oulhadj - Страница 2

Оглавление

Table of Contents

Cover

Preface

Introduction

1 Optimization: Theoretical Foundations and Methods 1.1. The formalization of an optimization problem 1.2. Constrained optimization methods 1.3. Classification of optimization methods 1.4. Conclusion 1.5. Bibliography

2 Metaheuristics for Robotics 2.1. Introduction 2.2. Metaheuristics for trajectory planning problems 2.3. Metaheuristics for automatic control problems 2.4. Conclusion 2.5. Bibliography

3 Metaheuristics for Constrained and Unconstrained Trajectory Planning 3.1. Introduction 3.2. Obstacle avoidance 3.3. Bilevel optimization problem 3.4. Formulation of the trajectory planning problem 3.5. Resolution with a bigenetic algorithm 3.6. Simulation with the model of the Neuromate robot 3.7. Conclusion 3.8. Bibliography

4 Metaheuristics for Trajectory Generation by Polynomial Interpolation 4.1. Introduction 4.2. Description of the problem addressed 4.3. Formalization 4.4. Resolution 4.5. Simulation results 4.6. Conclusion 4.7. Bibliography

5 Particle Swarm Optimization for Exoskeleton Control 5.1. Introduction 5.2. The system and the problem under consideration 5.3. Proposed control algorithm 5.4. Experimental results 5.5. Conclusion 5.6. Bibliography

Conclusion

10  Index

11  End User License Agreement

List of Tables

1 Chapter 2Table 2.1. Effects of the actions of the PID regulator

2 Chapter 3Table 3.1. Limits of the robot jointsTable 3.2. Geometric parametersTable 3.3. Position of obstacles in the robot workspaceTable 3.4. Algorithm parameters

3 Chapter 4Table 4.1. Algorithm parametersTable 4.2. Maximum values for the variables of the objective functionTable 4.3. Values of weighting parameters under testTable 4.4. Characteristics of some interpolation methods

4 Chapter 5Table 5.1. Characteristics of the participantsTable 5.2. Controller parameter values

List of Illustrations

1 Chapter 1Figure 1.1. Domain of admissible solutions and forbidden domainFigure 1.2. 1D multimodal objective function, in the absence of noiseFigure 1.3. 1D multimodal objective function, in the presence of noiseFigure 1.4. 2D multimodal objective function, in the absence of noiseFigure 1.5. 2D multimodal objective function, in the presence of noiseFigure 1.6. Constrained optimization. ■ Local minima. • Global minimum. For a co...Figure 1.7. Constrained optimization. ■ Global minimum in the presence of constr...Figure 1.8. Refinement of the performance of an algorithmFigure 1.9. Some deterministic methodsFigure 1.10. Some stochastic methods

2 Chapter 2Figure 2.1. Different stages of trajectory planningFigure 2.2. Hybrid planning: joint space -> Cartesian spaceFigure 2.3. An example of a hybrid planning strategyFigure 2.4. Hybrid planning: Cartesian space -> joint spaceFigure 2.5. Principle of a particle swarm algorithmFigure 2.6. Principle of an evolutionary algorithmFigure 2.7. Trajectory outlineFigure 2.8. Typical system response

3 Chapter 3Figure 3.1. Obstacle modeling. For a color version of this figure, see www.iste....Figure 3.2. Plane used to measure distances. For a color version of this figure,...Figure 3.3. Planar robot with an obstacleFigure 3.4. Illustrated example of obstacle detectionFigure 3.5. Description of the bigenetic algorithmFigure 3.6. Neuromate robot. The Neuromate robot has five degrees of freedom. Al...Figure 3.7. Geometric configuration of the robot. For a color version of this fi...Figure 3.8. Chromosomes of the algorithmFigure 3.9. Evolution of the best individual in the first levelFigure 3.10. Evolution of the best individual at the second levelFigure 3.11. End-effector position errorFigure 3.12. CPU timeFigure 3.13. Successive robot configurations. For a color version of this figure...Figure 3.14. Two solutions found by the algorithm. For a color version of this f...Figure 3.15. Variation in joint variables. For a color version of this figure, s...Figure 3.16. Best individual evolution. For a color version of this figure, see ...

4 Chapter 4Figure 4.1. Example of a polynomial curveFigure 4.2. Algorithm overall outlineFigure 4.3. Solution codingFigure 4.4. Angular positionFigure 4.5. Angular velocityFigure 4.6. Angular accelerationFigure 4.7. Mean and standard deviation of the objective functionFigure 4.8. Maximum velocitiesFigure 4.9. Maximum and minimum accelerationsFigure 4.10. Maximum jerkFigure 4.11. Maximum motion timeFigure 4.12. CPU timeFigure 4.13. Mean and standard deviation of the objective function after converg...Figure 4.14. Maximum velocityFigure 4.15. Maximum accelerationFigure 4.16. Maximum jerkFigure 4.17. Maximum timeFigure 4.18. Angular position with cubic splinesFigure 4.19. Angular velocity with cubic splinesFigure 4.20. Angular acceleration with cubic splinesFigure 4.21. Angular position for five nodesFigure 4.22. Angular velocity for five nodesFigure 4.23. Angular acceleration for five nodes

5 Chapter 5Figure 5.1. Lower limb exoskeletonFigure 5.2. Proposed controllerOrganigram 1. Standard PSO controlOrganigram 2. The proposed modified PSO-based controlFigure 5.3. Experimental environment [DAA 15, MAD 14]Figure 5.4. The mechanical structure of the EICoSI [MAD 14, DAA 15, RIF 12]Figure 5.5. Position trajectory tracking for individual 1. For a color version o...Figure 5.6. Position trajectory tracking for individual 2. For a color version o...Figure 5.7. Position trajectory tracking for individual 3. For a color version o...Figure 5.8. RMS of position trajectory tracking errors. For a color version of t...Figure 5.9. Control inputs for the three individuals 1, 2 and 3. For a color ver...Figure 5.10. Evolution of the adaptive PID parameters. For a color version of th...

Guide

Cover

2 Table of Contents

Begin Reading

Pages

v

2 iii

iv

ix

5 x

xi

xiii

xiv

xv

10  xvi

11  xvii

12  xviii

13  xix

14  1

15  2

16  3

17  4

18  5

19  6

20  7

21  8

22 9

23  10

24  11

25  12

26  13

27  14

28  15

29  16

30  17

31  18

32  19

33  20

34  21

35  22

36  23

37  24

38  25

39  27

40 28

41  29

42  30

43  31

44  32

45 33

46  34

47  35

48  36

49  37

50  38

51 39

52  40

53  41

54 42

55  43

56 44

57  45

58  46

59  47

60  48

61  49

62  50

63  51

64  52

65  53

66  54

67  55

68  56

69  57

70  58

71  59

72  60

73  61

74  62

75  63

76  64

77  65

78  66

79  67

80  68

81  69

82  70

83  71

84  72

85  73

86  74

87  75

88  76

89  77

90  78

91  79

92  80

93  81

94  82

95  83

96  84

97  85

98  87

99  88

100 89

101  90

102  91

103  92

104  93

105  94

106  95

107  96

108  97

109  98

110  99

111  100

112  101

113  102

114  103

115  104

116  105

117  106

118  107

119  108

120  109

121  110

122  111

123  112

124  113

125  114

126  115

127  116

128  117

129  118

130  119

131  121

132  122

133  123

134  124

135  125

136  126

137  127

138  128

139  129

140  130

141 131

142  132

143  133

144  134

145  135

146  136

147  137

148  138

149  139

150  140

151  141

152  142

153  143

154  144

155  145

156  147

157  148

158  149

159  150

160  151

161  153

162 154

163  155

164  156

165  157

166  158

167  159

168  160

169  161

170  162

171  163

172  165

Metaheuristics for Robotics

Подняться наверх